Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution structure of a zinc domain conserved in yeast copper-regulated transcription factors

Abstract

The three dimensional structure of the N-terminal domain (residues 1–42) of the copper-responsive transcription factor Amt1 from Candida glabrata has been determined by two-dimensional 1 H-correlated nuclear magnetic resonance (NMR) methods. The domain contains an array of zinc-binding residues (Cys-X 2 -Cys-X 8 -Cys-X-His) that is conserved among a family of Cu-responsive transcription factors. The structure is unlike those of previously characterized zinc finger motifs, and consists of a three-stranded antiparallel ß-sheet with two short helical segments that project from one end of the ß-sheet. Conserved residues at positions 16, 18 and 19 form a basic patch that may be important for DNA binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Portion of the 2D NOESY spectrum (200 ms mixing period) obtained for ZnAMT42 showing sequential NH-NH dipolar connectivities.
Figure 2: Summary of sequential (i to i + 1), medium range (i to i + 2–5) and long-range (i to i + >5) NOE connectivities observed in the 2D NOESY spectra of ZnAmt42.
Figure 3: a, Stereo view showing the best-fit superposition of the 15 refined Amt42 zinc domain structures (see Table 1 for statistical information).
Figure 4: Sequence conservation of the 40-residue Zn module in fungal proteins, including Amt1 from Candida Glabrata, Ace1, Mac1 and Lpz8 (YPR008w) from Saccharomyces cerevisiae, Crf1 from Yarrowia lipolytica (accession number Z23265), Ac31 from Schizosaccharomyces pombe (C31A2.11c, chromosome I), and Grisea from Podospora anserina.

Similar content being viewed by others

References

  1. Winge, D.R. et al. J. Bioinorg. Chem. 2, 2–10 (1997).

    CAS  Google Scholar 

  2. Hasset, R. & Kosman, D.J. J. Biol. Chem., 128 –134 (1995).

  3. Furst, P., Hu, S., Hackett, R. & Hamer, D. Cell 55, 705–717 (1988).

    Article  CAS  Google Scholar 

  4. Thiele, D.J. Mol. Cell. Biol. 8, 2745–2752 ( 1988).

    Article  CAS  Google Scholar 

  5. Dameron, C.T. Proc. Natl. Acad. Sci. USA 88, 6127–6131 (1991).

    Article  CAS  Google Scholar 

  6. Zhou, P. & Thiele, D.J. Proc. Natl. Acad. Sci. USA 88, 6112–6116 (1991).

    Article  CAS  Google Scholar 

  7. Graden, J.A. Biochemistry 35, 14583–14589 ( 1996).

    Article  CAS  Google Scholar 

  8. Farrell, R.A., Thorvaldsen, J.L. & Winge, D.R. Biochemistry 35, 1571– 1580 (1996).

    Article  CAS  Google Scholar 

  9. Buchman, C., Skroch, P., Dixon, W., Tullius, T.D. & Karin, M. Mol. Cell. Biol. 10, 4778–4787 (1990).

    Article  CAS  Google Scholar 

  10. Dobi, A., Dameron, C.T., Hu, S., Hamer, D. & Winge, D.R. J. Biol. Chem. 270, 10171– 10178 (1995).

    Article  CAS  Google Scholar 

  11. Dixon, W.J., Inouye, C., Karin, M. & Tullius, T.D. J. Bioinorg. Chem. 1, 451–459 ( 1996).

    CAS  Google Scholar 

  12. Koch, K.A. & Thiele, D.J. Mol. Cell. Biol. 16 , 724–734 (1996).

    Article  CAS  Google Scholar 

  13. Bustin, M. & Reeves, R. Progr. Nucleic Acid Res. Mol. Biol. 54, 35–95 ( 1996).

    Article  CAS  Google Scholar 

  14. Geierstanger, B.H., Volkman, B.F., Kremer, W. & Wemmer, D.E. Biochemistry 33, 5347–5355 (1994).

    Article  CAS  Google Scholar 

  15. Huth, J.R. et al. Nature Struct. Biol. 4, 657–665 (1997).

    Article  CAS  Google Scholar 

  16. Jungman, J. EMBO J. 12, 5061–5056 (1993).

    Article  Google Scholar 

  17. Dancis, A., Haile, D., Yuan, D.S. & Klauser, R.D. J. Biol. Chem. 269, 25660–25667 ( 1994).

    CAS  PubMed  Google Scholar 

  18. Yamaguchi-Iwai, Y. et al. J. Biol. Chem. 272, 17711– 17718 (1997).

    Article  CAS  Google Scholar 

  19. Labbe, S., Zhu, Z. & Thiele, D.J. J. Biol. Chem. 272, 15951–15958 (1997).

    Article  CAS  Google Scholar 

  20. Graden, J.A. & Winge, D.R. Proc. Natl. Acad. Sci. USA 94, 5550–5555 (1997).

    Article  CAS  Google Scholar 

  21. Georgatsou, E., Mavrogiannis, L.A., Fragiadakis, G.S. & Alexandraki, D. J. Biol. Chem. 272, 13786–13792 (1997).

    Article  CAS  Google Scholar 

  22. Posewitz, M.C., Simon, J.R., Farell, R.A. & Winge, D.R. J. Bioinorg. Chem. 1, 560–566 (1996).

    CAS  Google Scholar 

  23. Schwabe, J.W.R. & Kluge, A. Nature Struct. Biol. 1 , 345–349 (1994).

    Article  CAS  Google Scholar 

  24. Blake, P.R. & Summers, M.F. In Advances in biophysical chemistry . (ed. Bush, C.A.) 1–30 (JAI Press Ltd., London; 1994).

    Google Scholar 

  25. Wüthrich, K. NMR of proteins and nucleic acids. (John Wiley & Sons, New York; 1986).

    Book  Google Scholar 

  26. Güntert, P. & Wüthrich, K. J. Biomol. NMR 1, 447–456 (1991).

    Article  Google Scholar 

  27. Güntert, P., Braun, W. & Wüthrich, K. J. Mol. Biol. 217, 517– 530 (1991).

    Article  Google Scholar 

  28. Pérez-Alvarado, G.C. et al. Nature Struct. Biol. 1, 388– 398 (1994).

    Article  Google Scholar 

  29. Schwabe, J.W.R., Neuhaus, D. & Rhodes, D. Nature 348, 458– 461 (1990).

    Article  CAS  Google Scholar 

  30. Schwabe, J.W.R., Chapman, L., Finch, J.T. & Rhodes, D. Cell 75, 567–578 ( 1993).

    Article  CAS  Google Scholar 

  31. Omichinski, J.G. et al. Science 261, 438–446 ( 1993).

    Article  CAS  Google Scholar 

  32. Borghouts, C., Kimpel, E. & Osiewacz. Proc. Natl. Acad. Sci. USA 94, 100768– 110773 (1997).

    Article  Google Scholar 

  33. Reeves, R. & Nissen, M.S. J. Biol. Chem. 265, 8573–8582 (1990).

    CAS  PubMed  Google Scholar 

  34. Kopka, M.L., Yoon, C., Goodsell, D., Pjura, P. & Dickerson, R.E. Proc. Natl. Acad. Sci. USA 82, 1376–1380 (1985).

    Article  CAS  Google Scholar 

  35. Coll, M., Frederick, C.A., Wang, A.H.J. & Rich, A. Proc. Natl. Acad. Sci. USA 84, 8385–8389 ( 1987).

    Article  CAS  Google Scholar 

  36. Tabernero, L. et al. J. Biochemistry 32, 8403–8410 (1993).

    Article  CAS  Google Scholar 

  37. Johnson, B.A. & Blevins, R.A. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  38. Güntert, P. et al. J. Mol. Biol. 217, 531–540 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

Support from the National Institutes of Health (to D.R.W, M.C.P. and the Biotechnology Core Facility at the University of Utah), and technical assistance from R. Edwards (HHMI-UMBC) is gratefully acknowledged. R.B.T. and D.L.S. are Meyerhoff Undergraduate Scholars at UMBC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael F. Summers or Dennis R. Winge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, R., Smith, D., Zawrotny, M. et al. Solution structure of a zinc domain conserved in yeast copper-regulated transcription factors. Nat Struct Mol Biol 5, 551–555 (1998). https://doi.org/10.1038/805

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing