Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay–Sachs disease

Abstract

Chitin, the second most abundant polysaccharide on earth, is degraded by chitinases and chitobiases. The structure of Serratia marcescens chitobiase has been refined at 1.9 Å resolution. The mature protein is folded into four domains and its active site is situated at the C-terminal end of the central (βα)8-barrel. Based on the structure of the complex with the substrate disaccharide chitobiose, we propose an acid-base reaction mechanism, in which only one protein carboxylate acts as catalytic acid, while the nucleophile is the polar acetamido group of the sugar in a substrate-assisted reaction. The structural data lead to the hypothesis that the reaction proceeds with retention of anomeric configuration. The structure allows us to model the catalytic domain of the homologous hexosaminidases to give a structural rationale to pathogenic mutations that underlie Tay–Sachs and Sandhoff disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Henrissat, B. & Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781–788 (1993).

    Article  CAS  Google Scholar 

  2. Davies, G.J. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859 (1995).

    Article  CAS  Google Scholar 

  3. Chet, I., Barak, Z. & Oppenheim, A.B. Genetic engineering of microorganisms for improved biocontrol activity. in Biotechnology in Plant Disease Control (ed. I. Chet) 211–235 (Wiley Liss, Inc. 1993).

    Google Scholar 

  4. ZoBell, C.E. & Rittenberg, S.C. The occurence and characteristics of chitinoclastic bacteria in the sea. J. Bacteriol. 35, 275–287 (1937).

    CAS  Google Scholar 

  5. Perrakis, A. et al. Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2, 1169–1180 (1994).

    Article  CAS  Google Scholar 

  6. Roey, P.V., Rao, V., Plummer, Jr., T.H. & Tarentino, A.L. Crystal Structure of Endo-β-N-acetylglucosaminidase F1, an α/β-Barrel Enzyme Adapted for a Complex Substrate. Biochem. 33, 13989–13996 (1994).

    Article  Google Scholar 

  7. Rao, V., Guan, C. & Roey, P.V. Crystal structure of endo-β-N-acetylglucosaminidase H at 1.9 Å resolution: active-site geometry and substrate recognition. Structure 3, 449–457 (1995).

    Article  CAS  Google Scholar 

  8. Terwisscha van Scheltinga, A.C., Kalk, K.H., Beintema, J.J. & Dijkstra, B.W. Crystal structure of hevamine, a plant defence protein with chitinase and lysozyme activity. Structure 2, 1181–1189 (1994).

    Article  CAS  Google Scholar 

  9. Hart, P.J., Pfluger, H.D., Monzingo, A.F., Hollis, T. & Robertus, J.D. The Refined Crystal Structure of the Endochitinase from Hordeum vulgare L. Seeds at 1.8 Å Resolution. J. Mol. Biol. 248, 402–413 (1995).

    Article  CAS  Google Scholar 

  10. Oppenheim, A.B. & Chet, I. Cloned chitinases in fungal plant-pathogen control strategies. Trends. Biotech. 10, 392–394 (1992).

    Article  Google Scholar 

  11. Roberts, R.L. & Cabib, E. Serratia marcescens Chitinase: One-Step Purification and Use for the Determination of Chitin. Analyt. Biochem. 127, 402–412 (1982).

    Article  CAS  Google Scholar 

  12. Sandhoff, K., Conzelmann, E., Neufeld, E.F., Kaback, M.M. & Suzuki, K. The G M2 ganglosidoses. in The Metabolic Base of Inherited Disease 6th ed. (ed. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 1807–1842 (McGraw-Hill, New York, 1988).

    Google Scholar 

  13. Mahuran, D.J. The biochemistry of HEXA and HEXB gene mutations causing GM2 gangliosidosis. Biochim. Biophys. Acta. 1096, 87–94 (1991).

    Article  CAS  Google Scholar 

  14. Tews, I., Vincentelli, R. & Vorgias, C.E. N-acetylglucosaminidase (chitobiase) from Serratia marcescens: Gene sequence, and protein production and purification in Escherichia coli. Gene 170, 63–67 (1996).

    Article  CAS  Google Scholar 

  15. Xu, G.-Y. et al. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochem. 34, 6993–7009 (1995).

    Article  CAS  Google Scholar 

  16. Baumann, U. Crystal Structure of the 50 kDa Metallo protease from Serratia marcescens. J. Mol. Biol. 242, 244–251 (1994).

    Article  CAS  Google Scholar 

  17. Banner, D.W. et al. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution. Nature 255, 609–614 (1975).

    Article  CAS  Google Scholar 

  18. De Vos, A.M., Ultsch, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  Google Scholar 

  19. Koshland, D.E. Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. 28, 416–436 (1953).

    Article  CAS  Google Scholar 

  20. Paulsen, H. Fortschritte bei der selektiven chemischen Synthese komplexer Oligosaccharide Angew. Chem. Int. Ed.. Engl. 21, 155–173 (1982).

    Article  Google Scholar 

  21. Sinnot, M.L. Stereochemistry and the mechanisms of enzymatic glycosyl transfer. Chem Rev. 90, 1171–1202 (1990).

    Article  Google Scholar 

  22. McCarter, J.D. & Withers, S. Mechanisms of enzymatic glycoside hydrolysis. Curr. Op. Struct. Biol. 4, 885–892 (1994).

    Article  CAS  Google Scholar 

  23. Mo, F. & Jensen, L.H. The crystal structure of β-(1→4) linked disaccharide, α-N,N′-diacetylchitobiose monohydrate. Acta Cryst. B34, 1562–1569 (1978).

    Article  CAS  Google Scholar 

  24. Lai, E.C.K. & Withers, S.G. Stereochemistry and kinetics of the hydration of 2-acetamido-D-glucal by β-N-acetylhexosaminidases. Biochem. 33, 14743–14749 (1994).

    Article  CAS  Google Scholar 

  25. Thunissen, A.-M.W.H. et al. Doughnut-shaped structure of a bacterial muraminidase revealed by X-ray crystallography. Nature 367, 750–753 (1994).

    Article  Google Scholar 

  26. Weaver, L.H., Grütter, M.G. & Matthews, B.W. The refined structures of goose lysozyme and its complex with a bound trisaccharide show that the “goose-type” lysozyme lack a catalyticaspartate residue. J. Mol. Biol. 245, 54–68 (1995).

    Article  CAS  Google Scholar 

  27. Terwisscha van Scheltinga, A.C. et al. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin. Evidence for substrate assisted catalysis. Biochem. 34, 15619–115623 (1995).

    Article  CAS  Google Scholar 

  28. Lowe, G. & Sheppard, G. Acetamido-group participation in lysozyme catalysis. J. Chem. Soc Chem. Commun. 529–530 (1968).

  29. Soto-Gil, R.W. & Zyskind, J.W. N,N′-Diacetylchitobiase of Vibrio harveyi. J. Biol. Chem. 264, 14778–14783 (1989).

    CAS  PubMed  Google Scholar 

  30. Somerville, C.C. & Colwell, R.R. Sequence analysis of the b-N-acetylhexosaminidase gene from Vibrio vulnificus: Evidence for a common evolutionary origin of hexosaminidases. Proc. Natl. Acad, Sci. USA 90, 6751–6755 (1993).

    Article  CAS  Google Scholar 

  31. Beccari, T., Hoade, J., Orlacchio, A. & Stirling, J.L. Cloning and sequence analysis of a cDNA encoding the α-subunit of mouse β-N-acetylhexosaminidase and comparison with the human enzyme. Biochem. J. 285, 593–596 (1992).

    Article  CAS  Google Scholar 

  32. Myerowitz, R., Piekarz, R., Neufeld, E.F., Shows, T.B. & Suzuki, K. human β-hexosaminidase a chain: Coding sequence and homology with the β chain. Proc. Natl. Acad. Sci. USA 82, 7830–7834 (1985).

    Article  CAS  Google Scholar 

  33. Bapat, B., Ethier, M., Neote, K., Mahuran, D. & Gravel, R.A. Cloning and sequence analysis of the cDNA encoding the β-subunit of mouse β-hexosaminidase. FEBS Lett. 237, 191–195 (1988).

    Article  CAS  Google Scholar 

  34. Muldoon, L.L., Neuwelt, E.A., Pagel, M.A. & Weiss, D.L. Characterization of the molecular defect in feline model for type II GM2 gangliosidoesis (Sandhoff disease). Am. J. Pathol. 144, 1109–1118 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Neote, K. et al. Characterization of the human HEXB gene encoding lysosomal β-hexosaminidase. Genomics 3, 279–286 (1988).

    Article  CAS  Google Scholar 

  36. Korneluk, R.G. et al. Isolation of cDNA clones coding for the α-subunit of human β-hexosaminidase. J. Biol. Chem. 261, 8407–8413 (1986).

    CAS  PubMed  Google Scholar 

  37. Higgins, D.G., Bleasby, A.J. & Fuchs, R. CLUSTAL V: improved software for multiple sequence alignment. CABIOS 8, 189–191 (1992).

    CAS  PubMed  Google Scholar 

  38. Sander, C. & Schneider, R. Database of homogy-derived structures and the structurally meaning of sequence alignment. Proteins 9, 56–68 (1991).

    Article  CAS  Google Scholar 

  39. Chothia, C. & Lesk, A.M. The relation between the divergence of sequence and structure in protein. EMBO J. 5, 823–826 (1986).

    Article  CAS  Google Scholar 

  40. Rost, B. & Sander, C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55–72 (1994).

    Article  CAS  Google Scholar 

  41. Vriend, G. WHAT-IF: A molecular modelling and drug design program. J. Mol. Graph. 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  42. Chinea, G., Padron, G., Hooft, R.W.W., Sander, C. & Vriend, G. The use of protein-specific rotamers in model building by homology. Proteins 23, 415–421 (1995).

    Article  CAS  Google Scholar 

  43. de Fillippis, V., Sander, C. & Vriend, G. Predicting local structural changes that result from point mutations. Prot. Engng. 7, 1203–1208 (1994).

    Article  Google Scholar 

  44. Kytzia, H.-J. & Sandhoff, K. Evidence for two different active sites on human β-hexosaminidase A. J. Biol. Chem. 260, 7568–7572 (1985).

    CAS  PubMed  Google Scholar 

  45. Tanaka, A. et al. GM2-gangliosidosis B1 variant: analysis of β-hexosaminidase a gene abnormalities in seven patients. Am. J. Hum. Genet. 46, 329–339 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohno, K. & Suzuki, K. Mutation in GM2 gangliosidosis B1 variant. J. Neurochem. 50, 316–318 (1988).

    Article  CAS  Google Scholar 

  47. Triggs-Raine, B.L., Akerman, B.R., Clarke, J.T.R. & Gravel, R.A. Sequence of DNA flanking the exons of the HEXA gene, and identification of mutations in Tay–Sachs Disease. Am. J. Hum. Genet. 49, 1041–1054 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Akli, S., Chelly, J., Lacorte, J.-M., Poenaru, L. & Kahn, A. Seven novel Tay–Sachs mutations detected by chemical mismatch cleavage of PCR-amplified cDNA fragments. Genomics 11, 124–134 (1991).

    Article  CAS  Google Scholar 

  49. Fernandes, M. et al. A new Tay–Sachs disease B1 allele in exon 7 in two compound heterozygotes each with a second novel mutation. Hum. Mol. Genet. 1, 759–761 (1992).

    Article  CAS  Google Scholar 

  50. Tanaka, A., Punnett, H.H. & Suzuki, K. A new point mutation in the β-hexosaminidase a subunit gene responsible for infantile Tay–Sachs Disease in a non-Jewish Caucasian patient (a Kpn Mutant). Am. J. Hum. Genet. 47, 567–574 (1990).

    Google Scholar 

  51. Brown, C.A., Neote, K., Leung, A., Gravel, R.A. & Mahuran, D.J. Introduction of the a subunit mutation associated with the B1 variant of Tay–Sachs Disease into the β subunit produces a β-hexosaminidase B without catalytic activity. J. Biol. Chem. 264, 21705–21710 (1989).

    CAS  PubMed  Google Scholar 

  52. Brown, C.A. & Mahuran, D.J. Active arginine residues in β-hexosaminidases. J. Biol. Chem. 266, 15855–15862 (1991).

    CAS  PubMed  Google Scholar 

  53. Nakano, T. et al. A new point mutation within exon 5 of β-hexosaminidase a gene in a Japanese infant with Tay–Sachs Disease. Ann. Neurol. 27, 465–473 (1990).

    Article  CAS  Google Scholar 

  54. Nakano, T., Muscillo, M., Ohno, K., Hoffman, A.J. & Suzuki, K. A point mutatation in the coding sequence of the β-hexosaminidase a gene results in the enzyme protein in an unusual GM2-gangliosidosis variant. J. Neurochem. 51, 984–987 (1988).

    Article  CAS  Google Scholar 

  55. Akalin, N. et al. Tay–Sachs Disease in China: two new mutations and a “Macro Polo” allele. Am. J. Hum. Genet. 49, A2246 (1991).

    Google Scholar 

  56. Ainsworth, P.J. & Coulter-Mackie, M.B. A double mutation in exon 6 of the β-hexosaminidase α subunit in a patient with the B1 variant of Tay–Sachs Disease. Am. J. Hum. Genet. 51, 802–809 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Coulter-Mackie, M.B. Molecular characterization of both alleles in an unusual Tay–Sachs Disease B1 variant. Am. J. Hum. Genet. 54, 1126–1127 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Triggs-Raine, B.L. et al. A pseudodeficiency allele common in non-Jewish Tay–Sachs carriers: implications for carrier screening. Am. J. Hum. Genet. 51, 793–801 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cao, Z. et al. A second mutation associated with apparent β-hexosaminidase A pseudodeficiency: identification and frequency estimation. Am. J. Hum. Genet. 53, 1198–1205 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bolhuis, P.A., Ponne, N.J., Bikker, H., Baas, F. & deJong, V.J.M.B. Molecular basis of an adult form of Sandhoff disease: substitution of glutamine for arginine at position 505 of the β-chain of β-hexosaminidase results in a labile enzyme. Biochim. Biophys. Acta. 1182, 142–146 (1993).

    Article  CAS  Google Scholar 

  61. Petroulakis, E., Cao, Z., Salo, T., Clarke, J. & Triggs-Raine, B. A Trp474Cys mutation in the alpha-subunit of beta-hexosaminidase causes the subacute encephalopathic form of GM2 gangliosidosis, Type 1. Am. J. Hum. Genet. 55, A2129 (1994).

    Google Scholar 

  62. Cao, Z., Petroulakis, E., Salo, T. & Triggs-Raine, B. Expression of the HEXA mutations Arg247Trp and Arg249Trp, associated with beta-hexosaminidase A pseudodeficiency. Am. J. Hum. Genet. 55, A1251 (1994).

    Google Scholar 

  63. Navon, R. & Proia, R.L. The mutations in Ashkenazi Jews with adult GM2 gangliosidosis, the adult form of Tay–Sachs Disease. Science 243, 1471–1474 (1989).

    Article  CAS  Google Scholar 

  64. Paw, B.H., Kaback, M.M. & Neufeld, E.F. Molecular basis of adult-onset and chronic GM2 gangliosidosis of Ashkenazi Jewish origin: substitution of serine for glycine at position 269 of the α-subunit of β-hexosaminidase. Proc. Natl. Acad. Sci. USA 86, 2413–2417 (1989).

    Article  CAS  Google Scholar 

  65. Brown, C.A. & Mahuran, D.J. β-hexosaminidase Isozymes from cells cotransfected with α and β cDNA constructs: analysis of the α-subunit missense mutation associated with the adult form of Tay–Sachs Disease. Am. J. Hum. Genet. 53, 497–508 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kless, H., Sitrit, Y., Chet, I. & Oppenheim, A.B. Cloning of the gene coding for chitobiase of Serratia marcescens. Mol. Gen. Genet. 217, 471–473 (1989).

    Article  CAS  Google Scholar 

  67. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meths. Enzymol. 276 (in the press).

  68. Furey, W. & Swaminathan, S. PHASES - a program package for the processing and analysis of diffraction data from macromolecules. American Ciystallographic Association Meeting Abstracts 18, 73 (1990).

    Google Scholar 

  69. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  70. Brünger, A.T. Assessment of phase accuracy by cross validation: the free R value. Methods and application. Acta Crystallogr. D49, 24–36 (1993).

    Google Scholar 

  71. Konnert, J.H. & Hendrickson, W.A. A restrained-parameter thermal-factor refinement procedure. Acta Crystallogr. A36, 344–350 (1980).

    Article  CAS  Google Scholar 

  72. Collaborative Computer Project, Number 4 (CCP4) The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50, 760–763 (1994).

  73. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D49, 129–147 (1993).

    CAS  Google Scholar 

  74. Holm, L. & Sander, C. Protein Structure Comparison by Alignment of Distance Matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  75. van Gunsteren, W.F. & Berendsen, H.J. GROMOS. BIOMOS, Biomolecular Software, University of Groningen, the Netherlands.

  76. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plot of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  77. Navon, R. & Proia, R.L. Tay–Sachs Disease in Moroccan Jews: deletion of a phenylalanine in the α-subunit of β-hexosaminidase. Am. J. Hum. Genet. 48, 412–419 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Banerjee, P. et al. Molecular basis of an adult form of β-hexosaminidase B deficiency with motor neuron disease. Biochem. Biophys. Res. Comm. 181, 108–115 (1991).

    Article  CAS  Google Scholar 

  79. Mules, E.H., Hayflick, S., Miller, C.S., Reynolds, L.W. & Thomas, G.H. Six novel deleterious and three neutral mutations in the gene encoding the α-subunit of the hexosaminidase A in non-Jewish individuals. Am. J. Hum. Genet. 50, 834–841 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Paw, B.H. et al. Juvenile GM2 gangliosidosis caused by substitution of histidine for arginine at position 499 or 504 of the α-subunit of β-hexosaminidase. J. Biol. Chem. 265, 9452–9457 (1990).

    CAS  PubMed  Google Scholar 

  81. Paw, B.H., Wood, L.C. & Neufeld, E.F. A third mutation at the CpG dinucleotide of codon 504 and a silent mutation at codon 506 of the HEXA Gene. Am. J. Hum. Genet. 48, 1139–1146 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fernandes, M., Boulay, B., Hechtmann, P., Kaplan, F. & Strasberg, P. Five novel HEXA mutations in non-Jewish Tay–Sachs disease (TSD) patients. Am. J. Hum. Genet. 51, A656 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Author notes

  1. From September 1996 C.E.V will move to: Athens University, Biology Department, Biochemistry Laboratory, Panepistimiopoli, Kouponia, 15701 Athens, Greece

    • Constantin E. Vorgias
Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tews, I., Perrakis, A., Oppenheim, A. et al. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay–Sachs disease. Nat Struct Mol Biol 3, 638–648 (1996). https://doi.org/10.1038/nsb0796-638

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0796-638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing