Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo design and structural analysis of a model β-hairpin peptide system

Abstract

We have designed de novo a simple, context-free, model linear peptide system to fold into a regular β-hairpin structure, with three-residue β-strands connected by a type 1' β-turn. CD and NMR analysis of this peptide in aqueous solution show that the peptide folds into the expected conformation. Structural characterization of three peptide variants, in which some of the strand side-chains have been substituted by alanine, demonstrates that inter-strand side chain–side chain interactions are essential for β-hairpin formation. This simple model system will help to isolate the factors behind β-sheet formation, and contribute useful information about de novo protein design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zimm, B.H. & Bragg, J.K. Theory of the phase transition between helix and random coil. J. Chem. Phys. 31, 526 (1959).

    Article  CAS  Google Scholar 

  2. Lifson, R. & Roig, A. On theory of helix-coil transitions in biopolymers. J. Chem. Phys. 34, 1963–1974 (1961).

    Article  CAS  Google Scholar 

  3. Brown, J.E. & Klee, W.A. Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry, 10, 470–476 (1971).

    Article  CAS  Google Scholar 

  4. Chakrabartty, A. & Baldwin, R.L. Stability of α-helices. Adv. Prot Chem. 46, 141–177 (1995).

    CAS  Google Scholar 

  5. Muñoz, V. & Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters. Nature Struct. Biol. 1, 399–409 (1994).

    Article  Google Scholar 

  6. Minor, Jr., D.L. & Kim, P.S. Measurement of the β-sheet propensities of amino acids. Nature 367, 660–663 (1994).

    Article  CAS  Google Scholar 

  7. Minor, Jr., D.L. & Kim, P.S. Context is a major determinant of β-sheet propensity. Nature 371, 264–267 (1994).

    Article  CAS  Google Scholar 

  8. Smith, C.K. & Regan, L. Guidelines for protein design: The energetics of β sheet side chain interactions. Science 270, 980–982 (1995).

    Article  CAS  Google Scholar 

  9. Ptitsyn, O.B. Protein folding: General physical model. FEBS Lett. 131, 197–201 (1981).

    Article  CAS  Google Scholar 

  10. Dyson, H.J. & Wright, P.E. Defining solution conformations of small linear peptides. Annu. Rev. Biophys. Biophys. Chem. 20, 519–538 (1991).

    Article  CAS  Google Scholar 

  11. Blanco, F.J., Rivas, G. & Serrano, L. A short linear peptide that folds into a native stable β-hairpin in aqueous solution. Nature Struct. Biol. 1, 584–590 (1994).

    Article  CAS  Google Scholar 

  12. Kobayashi, N., Yoshii, H., Murakami, T. & Munekata, E. Study on the folding of immunoglobulin binding protein, streptococcal protein G in aqueous solution. Peptide Chem. 313–316 (1994).

  13. Blanco, F.J. et al. Evidence of a short linear peptide that folds into a native stable β-hairpin in aqueous solution. J. Am. Chem. Soc. 115, 5887–5888 (1993).

    Article  CAS  Google Scholar 

  14. Alba de, E., Blanco, F.J., Jiménez, M.A., Rico, M. & Nieto, J.L. Interactions responsible for the β-hairpin conformational population formed by a designed linear peptide. Eur. J. Biochem. 233, 283–292 (1995).

    Article  Google Scholar 

  15. Searle, M.S., Williams, D.H. & Packman, L.C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native β-hairpin. Nature Struct. Biol. 2, 999–1006 (1995).

    Article  CAS  Google Scholar 

  16. Sibanda, B.L. & Thornton, J.M. β-hairpin families in globular proteins. Nature 316, 170–174 (1985).

    Article  CAS  Google Scholar 

  17. Smith, C.K., Withka, J.M. & Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 33, 5510–5517 (1994).

    Article  CAS  Google Scholar 

  18. Kim, C.A. & Berg, J.M. Thermodynamic β-sheet propensities measured using a zinc-finger host peptide. Nature 362, 267–270 (1993).

    Article  CAS  Google Scholar 

  19. Wouters, M.A. & Curmi, P.M.G. An analysis of side chain interactions and pair correlations within anti parallel β-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs. Prot. Struct. Funct. Genet. 22, 119–131 (1995).

    Article  CAS  Google Scholar 

  20. Vriend, G. WHATIF: A molecular modelling and drug design program. J. molec. Graph. 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  21. Hutchinson, E.G. & Thornton, J.M. A revised set of potentials for β-turn formation in proteins. Prot. Sci. 3, 2207–2216 (1994).

    Article  CAS  Google Scholar 

  22. Muñoz, V. & Serrano, L. Intrinsic secondary structure propensities of the amino acids, using statistical Φ-ψ matrices: comparison with experimental results. Prot. Struct. Funct. Genet. 20, 301–311 (1994).

    Article  Google Scholar 

  23. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Prot. Chem. 34, 167–339 (1981).

    CAS  Google Scholar 

  24. Johnson, Jr., W.J. Secondary structure of proteins through circular dichroism spectroscopy. Ann. Rev. Biophys. Biophys. Chem. 17, 145–166 (1988).

    Article  CAS  Google Scholar 

  25. Merutka, G., Dyson, H.J. & Wright, P.E. ‘Random coil’ 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J. Biomol. NMR 5, 14–24 (1995).

    Article  CAS  Google Scholar 

  26. Williamson, M.P. Secondary-structure dependent chemical shifts in proteins. Biopolymers 29, 1423–1431 (1990).

    Article  CAS  Google Scholar 

  27. Serrano, L. Comparison between the Φ distribution of the amino acids in the protein database and NMR data indicates that amino acids have various Φ propensities in the random coil conformation. J. Molec. Biol. 254, 322–333 (1995).

    Article  CAS  Google Scholar 

  28. Smith, L.J. et al. Analysis of main chain torsion angles in proteins. Prediction of NMR coupling constants for native and random-coil conformations. J. Molec. Biol. 255, 494–506 (1996).

    Article  CAS  Google Scholar 

  29. Chothia, C. Conformation of twisted β-pleated sheets in proteins. J. Molec. Biol. 75, 295–302 (1973).

    Article  CAS  Google Scholar 

  30. Rose, G.D., Gierasch, L.M. & Smith, J.A. Turns in peptides and proteins. Adv. Prot. Chem. 37, 1–105 (1985).

    CAS  Google Scholar 

  31. Blanco, F.J. et al. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like β-hairpin formation. Biochemistry 33, 6004–6014 (1994).

    Article  CAS  Google Scholar 

  32. Yang, A. & Honig, B. Free energy determinants of secondary structure formation: II. anti parallel β-sheets. J. Molec. Biol. 52 366–376 (1995).

    Article  Google Scholar 

  33. Wilmot, C.M. & Thornton, J.M. Analysis and prediction of the different types of β-turns in proteins. Molec. Biol. 203 221–232 (1988).

    Article  CAS  Google Scholar 

  34. Sibanda, B.L., Blundell, T.L. & Thornton, J.M. Conformation of β-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. Molec. Biol. 206 759–777 (1989).

    Article  CAS  Google Scholar 

  35. Hobohm, U., Scharf, M., Schneider, R. & Sander, C. Selection of representative protein datasets. Prot. Sci. 1, 409 (1992).

    Article  CAS  Google Scholar 

  36. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  37. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  38. Wüthrich, K. NMR of proteins and nucleic acids. (John Wiley and Sons, New York, 1986).

    Book  Google Scholar 

  39. Güntert, P., Braun, W. & Wüthrich, K. Improved efficiency of protein structure calculations from NMR using the program DIANA with redundant dihedral angle constraints. J. Molec. Biol. 217, 517–530 (1991).

    Article  Google Scholar 

  40. Pearlman, D.A. et al. AMBER 4.1 (University of California, San Francisco, 1995).

    Google Scholar 

  41. Mcdonald, I., Naylor, D., Jones, D. & Thornton, J. HBPLUS (Department of Biochemistry and Molecular Biology, University College, London, 1993).

    Google Scholar 

  42. Karplus, M. Contact electron-spin coupling of nuclear magnetic moments. J. Phys. Chem. 30, 11–15 (1959).

    Article  CAS  Google Scholar 

  43. Viguera, A.R. & Serrano, L. Side-chain interactions between sulfur containing amino acids and phenylalanine in α-helices. Biochemistry 34, 8771–8779 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-Alvarado, M., Blanco, F. & Serrano, L. De novo design and structural analysis of a model β-hairpin peptide system. Nat Struct Mol Biol 3, 604–612 (1996). https://doi.org/10.1038/nsb0796-604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0796-604

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing