Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Why have mutagenesis studies not located the general base in ras p21

Abstract

Ras p21 plays a major role in the control of cell growth, and oncogenic mutations of this protein have been found in human cancers. Unfortunately, the detailed mode of action of Ras p21 is still unclear, in spite of the great interest in this protein and the availability of its X-ray crystal structure. In particular, mutagenesis studies of different active site residues could not identify the general base for GTP hydrolysis. Here we tackle this question using a computer simulation approach with clear and reliable energy considerations and conclude that the most likely general base is the bound GTP itself. Obviously, the identification of such a general base cannot be easily accomplished by mutagenesis experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Temeles, G.L., Gibbs, J.B., D'Alonzo, J.S., Sigal, I.S. & Scolnick, E.M. Yeast and mammalian Ras proteins have conserved biochemical properties. Nature 313, 700–703 (1985).

    Article  CAS  Google Scholar 

  2. Gideou, P. et al. Mutational and kinetic analysis of the GTPase-activating protein (GAP)-p21 interaction. Molec. Cell. Biol., 12, 2050–2054 (1992).

    Article  Google Scholar 

  3. De Vos, A.M. et al. 3-Dimensional structure of an oncogene protein - catalytic domain of human c-H-Ras. Science 239, 888–893 (1988).

    Article  CAS  Google Scholar 

  4. Krengel, U. et al. 3-Dimensional structures of H-Ras p21 mutants -molecular basis for their inability to function as signal transduction switch molecules. Cell 62, 539–548 (1990).

    Article  CAS  Google Scholar 

  5. Milburn, M. et al. Molecular switch for signal transduction -structural differences between active and inactive forms of protooncogenic Ras mutants. Science 247, 939–945 (1990).

    Article  CAS  Google Scholar 

  6. Pai, E.F. et al. Structure of the guanine-nucleotide-binding domain of the Ha-Ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214 (1989).

    Article  CAS  Google Scholar 

  7. Pai, E.F. et al. Refined crystal-structure of the triphosphate conformation of H-Ras p21 at 1.35Å resolution—implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

  8. Langen, R., Schweins, T. & Warshel, A. On the mechanism of guanosine triphosphate hydrolysis in Ras p21 proteins. Biochemistry 31, 8691–8696 (1992).

    Article  CAS  Google Scholar 

  9. Prive, G.G. et al. X-Ray crystal-structures of transforming p21 Ras mutants suggests a transition-state stabilization mechanism for GTP hydrolysis. Proc. natn. Acad. Sci. U.S.A. 89, 3649–3653 (1992).

    Article  CAS  Google Scholar 

  10. Chung, H.-H., Benson, D.R. & Schultz, P.G. Probing the structure and mechanism of Ras protein with an expanded genetic code. Science 259, 806–809 (1993).

    Article  CAS  Google Scholar 

  11. Berchtold, H. et al. Crystal-structure of active elongation-factor Tu reveals major domain rearrangements. Nature 365, 368–368 (1993).

    Article  CAS  Google Scholar 

  12. Noel, J.P., Hamm, H. & Sigler, P.B. The 2.2Å crystal structure of transducin complexed with GTPγs. Nature 366, 654–663 (1993).

    Article  CAS  Google Scholar 

  13. Warshel, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions (John Wiley, New York, 1991).

    Google Scholar 

  14. Aqvist, J. & Warshel, A. Calculations of the free energy profiles for the staphylococcal nuclease catalyzed reactions. Biochemistry 28, 4680–4689 (1989).

    Article  CAS  Google Scholar 

  15. Lee, F.S., Chu, Z.T. & Warshel, A. Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs. J. comp. Chem. 14, 161–185 (1993).

    Article  CAS  Google Scholar 

  16. Aqvist, J. & Warshel, A. Computer simulation of the initial proton-transfer step in human carbonic anhydrase. J. molec. Biol. 224, 7–14 (1992).

    Article  CAS  Google Scholar 

  17. Silverman, D.N. & Lindskog, S. The catalytic mechanism of carbonic anhydrase- Implications of a rate-limiting protolysis of water. Accts. chem. Res. 21, 30 (1988).

    Article  CAS  Google Scholar 

  18. Eigen, M. & de Mayer, L. Kinetics of neutralization Z. Elektrochem. 59, 986–993 (1955).

    CAS  Google Scholar 

  19. Guthrie, J.P. Hydration and dehydration of phosphoric acid derivatives: free energies of formation of the pentacoordinate intermediates for phosphate ester hydrolysis and of monomeric metaphosphate. J. Am. chem. Soc. 99, 3991–4001 (1977).

    Article  CAS  Google Scholar 

  20. Warshel, A. & Russell, S. Calculations of electrostatic interactions in biological systems and in solution. Q. Rev. Biophys. 17, 283–422 (1984).

    Article  CAS  Google Scholar 

  21. Warshel, A. Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. Biochemistry 20, 3167 (1981).

    Article  CAS  Google Scholar 

  22. Feuerstein, J., Goody, R.S. & Webb, M.R. The mechanism of guanosine nucleotide hydrolysis by p21 c-Ha-Ras. J. biol. Chem. 264, 6188–6190 (1989).

    CAS  Google Scholar 

  23. Harmark, K., Anborgh, P.H., Merola, M., Clark-B.F.C & Parmeggiani, A. Substitution of aspartic acid-80, a residue involved in coordination of magnesium, weakens the GTP binding and strongly enhances the GTPase of the G-domain of elongation factor-Tu. Biochemistry 31, 7367–7372 (1992).

    Article  CAS  Google Scholar 

  24. Mistou, M.Y., Cool, R.H. & Parmeggiani, A. Effects of ions on the intrinsic activities of C-H-Ras protein p21 - a comparison with elongation factor-Tu. Eur. J. Biochem. 204, 179 (1992).

    Article  CAS  Google Scholar 

  25. Williams, A. Concerted mechanisms of acyl group transfer reactions in solution. Accts. chem. Res. 22, 387–392 (1989).

    Article  CAS  Google Scholar 

  26. Warshel, A., Sussman, F. & Hwang, J.-K. Evaluation of catalytic free energies in genetically modified proteins. J. molec. Biol. 201, 139–159 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweins, T., Langen, R. & Warshel, A. Why have mutagenesis studies not located the general base in ras p21. Nat Struct Mol Biol 1, 476–484 (1994). https://doi.org/10.1038/nsb0794-476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0794-476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing