Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation

Abstract

The SAND domain is a conserved sequence motif found in a number of nuclear proteins, including the Sp100 family and NUDR. These are thought to play important roles in chromatin-dependent transcriptional regulation and are linked to many diseases. We have determined the three-dimensional (3D) structure of the SAND domain from Sp100b. The structure represents a novel α/β fold, in which a conserved KDWK sequence motif is found within an α-helical, positively charged surface patch. For NUDR, the SAND domain is shown to be sufficient to mediate DNA binding. Using mutational analyses and chemical shift perturbation experiments, the DNA binding surface is mapped to the α-helical region encompassing the KDWK motif. The DNA binding activity of wild type and mutant proteins in vitro correlates with transcriptional regulation activity of full length NUDR in vivo. The evolutionarily conserved SAND domain defines a new DNA binding fold that is involved in chromatin-associated transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the Sp100b SAND domain.
Figure 2: Charge distribution and sequence conservation of the Sp100b SAND domain.
Figure 3: DNA binding of wild type and mutant NUDR Peptide-J and the SAND domain.
Figure 4: DNA binding surface of the SAND domain.
Figure 5: Functional activity of full length wild type and mutant NUDR in in vivo transcription assays.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Gibson, T.J., Ramu, C., Gemünd, C. & Aasland, R. The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem. Sci. 23, 242–244 (1998).

    Article  CAS  Google Scholar 

  2. Bloch, D.B. et al. Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol. Cell. Biol. 20, 6138–6146 (2000).

    Article  CAS  Google Scholar 

  3. Bloch, D.B., de la Monte, S.M., Guigaouri, P., Filippov, A. & Bloch, K.D. Identification and characterization of a leukocyte-specific component of the nuclear body. J. Biol. Chem. 271, 29198–29204 (1996).

    Article  CAS  Google Scholar 

  4. Lehming, N., Le Saux, A., Schuller, J. & Ptashne, M. Chromatin components as part of a putative transcriptional repressing complex. Proc. Natl. Acad. Sci. USA 95, 7322–7326 (1998).

    Article  CAS  Google Scholar 

  5. Seeler, J.S., Marchio, A., Sitterlin, D., Transy, C. & Dejean, A. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc. Natl. Acad. Sci. USA 95, 7316–7321 (1998).

    Article  CAS  Google Scholar 

  6. Michelson, R.J. et al. Nuclear DEAF-1-related (NUDR) protein contains a novel DNA binding domain and represses transcription of the heterogeneous nuclear ribonucleoprotein A2/B1 promoter. J. Biol. Chem. 274, 30510–30519 (1999).

    Article  CAS  Google Scholar 

  7. Gross, C.T. & McGinnis, W. DEAF-1, a novel protein that binds an essential region in a Deformed response element. EMBO J. 15, 1961–1970 (1996).

    Article  CAS  Google Scholar 

  8. Lutterbach, B., Sun, D., Schuetz, J. & Hiebert, S.W. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol. Cell. Biol. 18, 3604–3611 (1998).

    Article  CAS  Google Scholar 

  9. Oshima, H., Szapary, D. & Simons, S.S. The factor binding to the glucocorticoid modulatory element of the tyrosine aminotransferase gene is a novel and ubiquitous heteromeric complex. J. Biol. Chem. 270, 21893–21901. (1995).

    Article  CAS  Google Scholar 

  10. Christensen, J., Cotmore, S.F. & Tattersall, P. Two new members of the emerging KDWK family of combinatorial transcription modulators bind as a heterodimer to flexibly spaced PuCGPy half-sites. Mol. Cell. Biol. 19, 7741–7750 (1999).

    Article  CAS  Google Scholar 

  11. Nagamine, K. et al. Positional cloning of the APECED gene. Nature Genet. 17, 393–398 (1997).

    Article  CAS  Google Scholar 

  12. Pitkanen, J. et al. The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J. Biol. Chem. 275, 16802–16809 (2000).

    Article  CAS  Google Scholar 

  13. Huggenvik, J.I. et al. Characterization of a nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR) transcriptional regulator protein. Mol. Endocrinol. 12, 1619–1639 (1998).

    Article  CAS  Google Scholar 

  14. Szostecki, C., Guldner, H.H., Netter, H.J. & Will, H. Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J. Immunol. 145, 4338–4347 (1990).

    CAS  PubMed  Google Scholar 

  15. Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P.S. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am. J. Hum. Genet. 63, 297–304 (1998).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  17. Lee, M.S., Kliewer, S.A., Provencal, J., Wright, P.E. & Evans, R.M. Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding. Science 260, 1117–1121 (1993).

    Article  CAS  Google Scholar 

  18. Klemm, J.D. & Pabo, C.O. Oct-1 POU domain–DNA interactions: cooperative binding of isolated subdomains and effects of covalent linkage. Genes Dev. 10, 27–36 (1996).

    Article  CAS  Google Scholar 

  19. Haynes, S.R. et al. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 20, 2603 (1992).

    Article  CAS  Google Scholar 

  20. Aasland, R., Gibson, T.J. & Stewart, A.F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56–59 (1995).

    Article  CAS  Google Scholar 

  21. Wolffe, A.P. & Guschin, D. Review: chromatin structural features and targets that regulate transcription. J. Struct. Biol. 129, 102–122 (2000).

    Article  CAS  Google Scholar 

  22. Liu, Z. et al. The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. Structure Fold. Des. 7, 1557–1566 (1999).

    Article  CAS  Google Scholar 

  23. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX Pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  24. Bartels, C., Xia, T.-H., Billeter, M., Güntert, P. & Wüthrich, K. The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 5, 1–10 (1995).

    Article  Google Scholar 

  25. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. NMR Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  26. Clore, G.M. & Gronenborn, A.M. Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 16, 22–34 (1998).

    Article  CAS  Google Scholar 

  27. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  Google Scholar 

  28. Bottomley, M.J., Macias, M.J., Liu, Z. & Sattler, M. A novel NMR experiment for the sequential assignment of proline residues and proline stretches in 13C/15N labeled proteins. J. Biomol. NMR 13, 381–385 (1999).

    Article  CAS  Google Scholar 

  29. Kuboniwa, H., Grzesiek, S., Delaglio, F. & Bax, A. Measurement of HN-Hα J-couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J. Biomol. NMR 4, 871–878 (1994).

    Article  CAS  Google Scholar 

  30. Hu, J.-S. & Bax, A. χ1 angle information from a simple two-dimensional NMR experiment that identifies trans 3JNCγ couplings in isotopically enriched proteins. J. Biomol. NMR 9, 323–328 (1997).

    Article  CAS  Google Scholar 

  31. Brünger, A.T. et al. Crystallography,NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  32. Nilges, M. & O'Donoghue, S.I. Ambiguous NOEs and automated NOESY assignment. Prog. NMR Spectrosc. 32, 107–139 (1998).

    Article  CAS  Google Scholar 

  33. Sprangers, R. et al. Refinement of the protein backbone angle ψ in NMR structure calculations. J. Biomol. NMR 16, 47–58 (2000).

    Article  CAS  Google Scholar 

  34. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J .Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  35. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

  36. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  37. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Protein Struc. Func. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  38. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J.B. and Z.L. are grateful for EMBO/EMBL fellowships. This work was supported by the DFG (M.S.), the American Cancer Society (J.I.H.) and the NIH (M.W.C.). We are grateful to G. Stier for providing plasmids for TEV purifications, A. Urbani for advice with fluorescence titrations, H. Oschkinat and P. Schmieder (FMP, Berlin) for recording a NOESY spectrum at 750 MHz, R. Sprangers for help with the structure refinement and M. Saraste for critical reading of the manuscript.

This contribution is dedicated to the memory of Matti Saraste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sattler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottomley, M., Collard, M., Huggenvik, J. et al. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Mol Biol 8, 626–633 (2001). https://doi.org/10.1038/89675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing