Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers

Abstract

Single chromatin fibers were assembled directly in the flow cell of an optical tweezers setup. A single λ phage DNA molecule, suspended between two polystyrene beads, was exposed to a Xenopus laevis egg extract, leading to chromatin assembly with concomitant apparent shortening of the DNA molecule. Assembly was force-dependent and could not take place at forces exceeding 10 pN. The assembled single chromatin fiber was subjected to stretching by controlled movement of one of the beads with the force generated in the molecule continuously monitored with the second bead trapped in the optical trap. The force displayed discrete, sudden drops upon fiber stretching, reflecting discrete opening events in fiber structure. These opening events were quantized at increments in fiber length of 65 nm and are attributed to unwrapping of the DNA from around individual histone octamers. Repeated stretching and relaxing of the fiber in the absence of egg extract showed that the loss of histone octamers was irreversible. The forces measured for individual nucleosome disruptions are in the range of 20–40 pN, comparable to forces reported for RNA- and DNA-polymerases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and the specially designed flow cell.
Figure 2: Schematic representing chromatin assembly on a single λ DNA molecule (ac) and stretching of the assembled chromatin fiber (d–f).
Figure 3: Stretching chromatin fibers reveals discrete opening events not present during stretching of naked DNA.
Figure 4: Disruption events are quantized.
Figure 5: The unraveling of nucleosomes during stretching is irreversible, as evidenced by performing successive stretch-relax cycles on the same chromatin fiber.

Similar content being viewed by others

References

  1. van Holde, K. & Zlatanova, J. Proc. Natl. Acad. Sci. USA 93, 10548–10555 (1996).

    Article  CAS  Google Scholar 

  2. Liu, L.F. & Wang, J.C. Proc. Natl. Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  Google Scholar 

  3. Yin, H. et al. Science 270, 1653–1657 (1995).

    Article  CAS  Google Scholar 

  4. Wang, M.D. et al. Science 282, 902–907 (1998).

    Article  CAS  Google Scholar 

  5. Workman, J.L. & Kingston, R.E. Annu. Rev. Biochem. 67, 545–579 (1998).

    Article  CAS  Google Scholar 

  6. Bennink, M.L. et al. Cytometry 36, 200–208 (1999).

    Article  CAS  Google Scholar 

  7. Leno, G.H. Methods Cell Biol. 53, 497–515 (1998).

    Article  CAS  Google Scholar 

  8. Laskey, R.A., Mills, A.D. & Morris, N.R. Cell 10, 237–243 (1977).

    Article  CAS  Google Scholar 

  9. Smith, S.B., Cui, Y. & Bustamante, C. Science 271, 795–799 (1996).

    Article  CAS  Google Scholar 

  10. Cluzel, P. et al. Science 271, 792–794 (1996).

    Article  CAS  Google Scholar 

  11. Flory, P.J. Statistical mechanics of chain molecules (Hanser Publishers, Munich; 1989).

    Google Scholar 

  12. Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S.B. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

  13. Marko, J.F. & Siggia, E.D. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  14. Wang, M.D., Yin, H., Landick, R., Gelles, J. & Block, S.M. Biophys. J. 72, 1335–1346 (1997).

    Article  CAS  Google Scholar 

  15. Svoboda, K., Schmidt, C.F., Schnapp, B.J. & Block, S.M. Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  16. Kitamura, K., Tokunaga, M., Iwane, A.H. & Yanagida, T. Nature 397, 129–134 (1999).

    Article  CAS  Google Scholar 

  17. van Holde, K. Chromatin (Springer Verlag, New York; 1988).

    Google Scholar 

  18. van Holde, K. & Zlatanova, J. BioEssays 21, 776–780 (1999).

    Article  CAS  Google Scholar 

  19. Lu, Z.H., Sittman, D.B., Brown, D.T., Munshi, R. & Leno, G.H. J. Cell Sci. 110, 2745–2758 (1997).

    CAS  PubMed  Google Scholar 

  20. An, W., van Holde, K. & Zlatanova, J. J. Biol. Chem. 273, 26289–26291 (1998).

    Article  CAS  Google Scholar 

  21. Dworkin-Rastl, E., Kandolf, H. & Smith, R.C. Devel. Biol. 161, 425–439 (1994).

    Article  CAS  Google Scholar 

  22. Dimitrov, S., Dasso, M.C. & Wolffe, A.P. J. Cell Biol. 126, 591–601 (1994).

    Article  CAS  Google Scholar 

  23. Zlatanova, J., Leuba, S.H. & van Holde, K. Crit. Rev. Eukaryot. Gene Expr. 9, 245–255 (1999).

    Article  CAS  Google Scholar 

  24. Cui, Y. & Bustamante, C. Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

    Article  CAS  Google Scholar 

  25. Marko, J.F. & Siggia, E.D. Biophys. J. 73, 2173–2178 (1997).

    Article  CAS  Google Scholar 

  26. Evans, E. & Ritchie, K. Biophys. J. 76, 2439–2447 (1999).

    Article  CAS  Google Scholar 

  27. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  28. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  29. Wuite, G.J.L., Smith, S.B., Young, M., Keller, D. & Bustamante, C. Nature 404, 103–106 (2000).

    Article  CAS  Google Scholar 

  30. Leuba, S.H. et al. Proc. Natl. Acad. Sci. USA 91, 11621–11625 (1994).

    Article  CAS  Google Scholar 

  31. Yang, G., Leuba, S.H., Bustamante, C., Zlatanova, J. & van Holde, K. Nature Struct. Biol. 1, 761–763 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z.H. Lu for preparation of the extract, M. Tomschik for biochemical characterization of the assembled chromatin fibers and M. Karymov for help with the mathematical modeling. Presented research is supported by the Dutch Foundation for Fundamental Research on Matter (M.L.B.) and the National Science Foundation (G.H.L.). S.H.L. is a National Cancer Institute Scholar. A collection of movies and animations demonstrating real-time attaching of the single λ DNA to the beads and chromatin assembly are at the following web sites: http://tnweb.tn.utwente.nl/top/ and http://rex.nci.nih.gov/RESEARCH/basic/lrbge/leuba.html.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin L. Bennink or Jan Greve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennink, M., Leuba, S., Leno, G. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nat Struct Mol Biol 8, 606–610 (2001). https://doi.org/10.1038/89646

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing