Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The formation of a native-like structure containing eight conserved hydrophobic residues is rate limiting in two-state protein folding of ACBP

Abstract

The acyl-coenzyme A-binding proteins (ACBPs) contain 26 highly conserved sequence positions. The majority of these have been mutated in the bovine protein, and their influence on the rate of two-state folding and unfolding has been measured. The results identify eight sequence positions, out of 24 probed, that are critical for fast productive folding. The residues are all hydrophobic and located in the interface between the N- and C-terminal helices. The results suggest that one specific site dominated by conserved hydrophobic residues forms the structure of the productive rate-determining folding step and that a sequential framework model can describe the protein folding reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Three-dimensional structure of bovine ACBP (PDB accession code 2ABD).
Figure 2: a, Equilibrium unfolding of ACBP variants at 278 K, 0.02 M sodium acetate, pH 5.3.
Figure 3: Structure of ACBP emphasizing the eight residues that are critical for formation of RLNLS.
Figure 4: Correlation between ΔΔGD-N and ΔΔGD-RLNLS showing two groups of variants.
Figure 5: The sequential framework model for ACBP folding.

Similar content being viewed by others

References

  1. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, W.S. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  2. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  3. Alexander, P., Oran, J. & Bryan, P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry 31, 7243–7248 (1992).

    Article  CAS  Google Scholar 

  4. Briggs, M.S. & Roder, H. Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc. Natl. Acad. Sci. USA 89, 2017–2021 (1992).

    Article  CAS  Google Scholar 

  5. Viguera, A.R., Martinez, J.C., Filimonoc, V.V., Mateo, P.L. & Serrano, L. Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry 33, 2142–2150 (1994).

    Article  CAS  Google Scholar 

  6. Huang, G.S. & Oas, T.G. Structure and stability of monomeric λ repressor: NMR evidence for two-state folding. Biochemistry 34, 3884–3892 (1995).

    Article  CAS  Google Scholar 

  7. Kragelund, B.B., Robinson, C.V., Knudsen, J., Dobson, C.M. & Poulsen, F.M. Folding of a four-helix bundle. Studies of acyl-coenzyme A binding protein. Biochemistry 34, 7217–7224 (1995).

    Article  CAS  Google Scholar 

  8. Schindler, T., Harrler, M., Marahiel, M.A. & Schmid, F.X. Extremely rapid folding in the absence of intermediates. Nature Struct. Biol. 2, 663–673 (1995).

    Article  CAS  Google Scholar 

  9. Villegas, V. et al. Evidence for a two-state transition in the folding process of the activation domain of human procarboxypeptidase A2. Biochemistry 34, 15105–15110 (1995).

    Article  CAS  Google Scholar 

  10. Scalley, M.L. et al. Kinetics of folding and unfolding the IgG binding domain of Peptostreptococcal protein L. Biochemistry 36, 3373–3382 (1997).

    Article  CAS  Google Scholar 

  11. Schönbrunner, N., Koller, K-P. & Kiefhaber, T. Folding of the disulfide-bonded β-sheet protein tendamistat: Rapid two-state folding without hydrophobic collapse. J. Mol. Biol. 268, 526–538 (1997).

    Article  Google Scholar 

  12. Plaxco, K.W., Spitzfaden, C., Campell, I.D. & Dobson, C.M. A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. J. Mol. Biol. 270, 763–770 (1997).

    Article  CAS  Google Scholar 

  13. Clarke, C., Hamill, S.J. & Johnson, C.M. Folding and stability of a fibronectin type III domain of human Tanascin. J. Mol. Biol. 270, 771–778 (1997).

    Article  CAS  Google Scholar 

  14. Milla, M.E., Brown, B.M., Waldburger, C.D. & Sauer, R.T. P22 Arc repressor: transition state properties inferred from mutational effects on the rates of protein unfolding and refolding. Biochemistry 34, 13914–13919 (1997).

    Article  Google Scholar 

  15. Fersht, A.R., Matouschek, A. & Serrano, L. The folding of an enzyme I. Theory of protein engineering analysis of stability and pathways of protein folding. J. Mol. Biol. 224, 771–782 ( 1992).

    Article  CAS  Google Scholar 

  16. Jackson, S.E., elMasry, N. & Fersht, A.R. Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2. A critical test of the protein engineering method of analysis. Biochemistry 30, 11270–11278 (1993).

    Article  Google Scholar 

  17. Jones, C.M. et al. Fast events in protein folding initiated by nanosecond laser photolysis. Proc. Natl. Acad. Sci. USA 90, 11860–11864 (1993).

    Article  CAS  Google Scholar 

  18. Bryngelsen, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins Struct. Funct. Genet. 21, 167– 195 (1995).

    Article  Google Scholar 

  19. Onuchic, J.N., Wolynes, P.G., Luthey-Schulten, Z. & Socci, N.D. Toward an outline of the topography of a realistic protein-folding funnel. Proc. Natl. Acad. Sci. USA 92, 3626– 3630 (1995).

    Article  CAS  Google Scholar 

  20. Onuchi, J.N., Socci, N.D., Luthey-Schulten, Z. & Wolynes, P.G. Protein folding funnels: the nature of the transition state ensemble. Folding & Design 1, 441–450 (1996).

    Article  Google Scholar 

  21. Itzhaki, L.S., Otzen, D.A. & Fersht, A.R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analyzed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J. Mol. Biol. 254, 260–288 (1995).

    Article  CAS  Google Scholar 

  22. Burton, R.E., Huang, G.S., Daugherty, M.A., Calderone, T.L. & Oas, T.G. The energy landscape of a fast-folding protein mapped by Ala-Gly substitutions. Nature Struct. Biol. 4, 305–310 (1997).

    Article  CAS  Google Scholar 

  23. Lopéz-Hernandez, E., Cronet, P., Serrano, L. & Munoz, V. Folding kinetics of CheY mutants with enhanced native alpha-helix propensities. J. Mol. Biol. 266, 610–620 (1997).

    Article  Google Scholar 

  24. Otzen, D.E., Itzhaki, L.S., elMasry, N.F., Jackson, S.E. & Fersht, A.R. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding. Proc. Natl. Acad. Sci. USA 91, 10422–10425 (1994).

    Article  CAS  Google Scholar 

  25. Andersen, K.V. & Poulsen, F.M. The three-dimensional structure of acyl-coenzyme A binding protein from bovine liver: structural refinement using heteronuclear multidimensional NMR spectroscopy. J. Biomol. NMR 3, 271–284 (1993).

    Article  CAS  Google Scholar 

  26. Kragelund, B.B. et al. Fast and one-step folding of closely and distantly related homologous proteins of a four-helix bundle family. J. Mol. Biol. 256, 187–200 (1996).

    Article  CAS  Google Scholar 

  27. Kragelund, B.B., Andersen, K.V., Madsen, J.C., Knudsen, J. & Poulsen, F.M. Three-dimensional structure of the complex between acyl-coenzyme A binding proteins and palmitoyl-coenzyme A. J. Mol. Biol. 230, 1260– 1277 (1993).

    Article  CAS  Google Scholar 

  28. Shakhnovich, E., Abkevich, A. & Ptitsyn, O. Conserved residues and the mechanism of protein folding. Nature 379, 96–98 (1996).

    Article  CAS  Google Scholar 

  29. Ladurner, A.G., Itzhaki, L.S. & Fersht, A.R. Strain in the folding nucleus of chymotrypsin inhibitor 2. Folding & Design 2, 363– 368 (1997).

    Article  CAS  Google Scholar 

  30. ÓNeil, K.T. & Degrado, W.F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651 (1990).

    Article  Google Scholar 

  31. Kragelund, B.B. et al. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein. Biochemistry 38, 2386–2394 (1999).32. Tanford, C. Protein denaturation, part C. Theoretical models for the mechanism of denaturation. Adv. Prot. Chem. 24, 1– 95 (1970).

    Article  CAS  Google Scholar 

  32. Tanford, C. Protein denaturation, part C. Theoretical models for the mechanism of denaturation. Adv. Prot. Chem. 24, 1– 95 (1970).

    CAS  Google Scholar 

  33. Myers, J. K, Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).

    Article  CAS  Google Scholar 

  34. Shortle, D. Staphylococcal nuclease: a showcase of m-value effects. Adv. Protein Chem. 46, 217–247 (1995).

    Article  CAS  Google Scholar 

  35. Thompson, P.A., Eaton, W.A. & Hofrichter, J. Laser temperature jump study of the helix-coil kinetics of an alanine peptide interpreted with a kinetic zipper model. Biochemistry 36, 9200–9210 (1997).

    Article  CAS  Google Scholar 

  36. Anfinsen, C. The formation and stabilization of protein structure. Biochem. J. 128, 737–749 (1972).

    Article  CAS  Google Scholar 

  37. Ptitsyn, O. Protein folding: hypotheses and experiments. J. Protein Chem. 6, 273–293 (1987).

    Article  CAS  Google Scholar 

  38. Karplus, M. & Weaver, D.L. Protein-folding dynamics. Nature 260, 404–406 (1976).

    Article  CAS  Google Scholar 

  39. Karplus, M. & Weaver, D.L. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 3, 650–668 (1994).

    Article  CAS  Google Scholar 

  40. Grantcharova, V.P., Riddle, D.S., Santiago, J.V., & Baker, D. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nature Struct. Biol. 5, 714–720 (1998).

    Article  CAS  Google Scholar 

  41. Martinez, J.C., Pisabarro, M.T., & Serrano, L. Obligatory steps in protein folding and the conformational diversity of the transition state. Nature Struct. Biol. 5, 721–729 (1998).

    Article  CAS  Google Scholar 

  42. Burton, R.E., Myers, J.K. & Oas, T.G. Protein folding dynamics: quantitative comparison between theory and experiment. Biochemistry 37, 5337–5343 (1998).

    Article  CAS  Google Scholar 

  43. Duan, Y. & Kollman, P.A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282, 740–744 (1998).

    Article  CAS  Google Scholar 

  44. Mandrup, S. et al. Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-coenzyme A binding protein. Biochem. J. 276, 817–823 (1991).

    Article  CAS  Google Scholar 

  45. Rosendal, J., Ertbjerg, P. & Knudsen, J. Characterization of ligand binding to acyl-CoA binding protein. Biochem. J. 290, 321– 326 (1993).

    Article  CAS  Google Scholar 

  46. Kjær, M., Andersen, K.V. & Poulsen, F.M. Automated and semiautomated analysis of homo- and heteronuclear multidimensional nuclear magnetic resonance spectra of proteins: the program PRONTO. Methods Enzymol. 239, 288–307 (1994).

    Article  Google Scholar 

  47. Hubbard, S.J & Thornton, J.M. 'NACCESS', computer program. (Department of Biochemistry and Molecular Biology, University College, London; 1993).

    Google Scholar 

Download references

Acknowledgements

K. Hansen, J. Stenvang Jepsen, K. Poulsen, S. Radmehr and P.V. Sørensen are acknowledged for production of some ACBP variants. E. Knudsen, J. Andersen and P. Skovgaard are acknowledged for skilled technical assistance, and C. Rischel is thanked for providing the program CANOO. We acknowledge the advice to make additional mutations from the referees of this paper. This publication is a contribution from the Danish Protein Engineering Research Center and is also supported by the Danish Natural Research Councils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flemming M. Poulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kragelund, B., Osmark, P., Neergaard, T. et al. The formation of a native-like structure containing eight conserved hydrophobic residues is rate limiting in two-state protein folding of ACBP. Nat Struct Mol Biol 6, 594–601 (1999). https://doi.org/10.1038/9384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing