Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The crystal structure of HasA, a hemophore secreted by Serratia marcescens

Abstract

Free iron availability is strongly limited in vertebrate hosts, making the iron acquisition by siderophores inappropriate. Pathogenic bacteria have developed various ways to use the host's iron from iron-containing proteins. Serratia marcescens can use the iron from hemoglobin through the secretion of a hemophore called HasA, which takes up the heme from hemoglobin and shuttles it to the receptor HasR, which in turn, releases heme into the bacterium. We report here the first crystal structure of such a hemophore, bound to a heme group at two different pH values and at a resolution of 1.9 Å. The structure reveals a new original fold and suggests a hypothetical mechanism for both heme uptake and release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo view of the heme region.
Figure 2: Backbone structure of HasA.
Figure 3: Stereo view of the HasA Cα trace.
Figure 4: View of the residues in the heme binding site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Neiland, J.B. Annu. Rev. Biochem. 50, 715–731 (1981).

    Article  Google Scholar 

  2. Postle, K. J. Bioenerg. Biomembr. 25, 591–601 (1993).

    CAS  PubMed  Google Scholar 

  3. Ferguson, A.D., Hofmann, E., Coulton, J.W., Diederichs, K. & Welte, W. Science 282, 2215–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Buchanan, S.K. et al. Nature Struct. Biology 6, 56–63 (1999).

    Article  CAS  Google Scholar 

  5. Gray-Owen, S.D. & Shryvers, A.B. Trends Microbiol. 4, 185–191 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, B.C. Mol. Microbiol. 18, 383–390 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Hanson, M.S., Pelzel, S.E., Latimer, J.L., Muller-Eberhard, U. & Hansen, E.J. Proc. Nat. Acad. Sci. USA 89, 1973–1977 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Létoffé, S., Ghigo, J.M. & Wandersman, C. Proc. Natl. Acad. Sci. USA 91, 9876–9880 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wolff, N., Delepelaire, P., Ghigo, J.M. & Delepierre, M. Eur. J. Biochem. 234, 400–407 (1997).

    Article  Google Scholar 

  10. Ghigo, J.M., Létoffé, S. & Wandersman, C. J. Bacteriol. 179, 3572–3579 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Létoffé, S. Redeker, V. & Wandersman, C. Mol. Microbiol. 28, 1223–1234 (1998).

    Article  PubMed  Google Scholar 

  12. Izadi, N., Henry, Y., Haladjian, J., Goldberg, M.E., Wandersman, C., Delepierre, M. & Lecroisey, A. Biochemistry 36, 7050–7057 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Chan, A.W.E., Hutchinson, E.G., Harris, D. & Thornton, J.M. Protein Sci. 2, 1574–1590 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Orengo, C.A. & Thornton, J.M. Structure 1, 105–120 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Reid, D.J., Murthy, M.R., Sicignano, A., Tanaka, N., Musik, W.D. & Rossman, M.G. Proc. Natl. Acad. Sci. USA 78, 4767–4771 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams, P.A., Fülöp, V., Garman, E.F., Saunders, N.F.W., Ferguson, S.J. & Hajdu, J. Nature 389, 406–412 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Maurus, R. et al. J. Biol. Chem. 269, 12606–12610 (1994).

    CAS  PubMed  Google Scholar 

  18. Tsai, A., Kulmacz, R.J., Wang, J., Wang, Y., Van Wart, H.E. & Palmer, G. J. Biol. Chem. 268, 8554–8563 (1993).

    CAS  PubMed  Google Scholar 

  19. Cheesman, M.R., Ferguson, F.J., Moir, J.W.B., Richardson, D.J., Zumft, W.G. & Thomson, A.J. Biochemistry 36, 16267–16276 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Rees, D.C. Proc. Natl. Acad. Sci. USA 82, 3082–3085 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stellwagen., E. Nature 275, 73–74 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Czjzek, M., Payan, F. & Haser R. Biochimie 76, 546–553 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Létoffé, S., Ghigo, J.M. & Wandersman, C. J. Bacteriol. 176, 5372–5377 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ottwinovski, Z. DENZO: An oscillation data processing program for macromolecular protein. (Yale University, New Haven, Connecticut;1993).

    Google Scholar 

  25. Collaborative Computational Project No 4. Acta Crystallogr. D 50, 760–763 (1994).

  26. De La Fortelle, E. & Bricogne, G. Macromolecular crystallography. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Roussel, A. & Cambillau, C. In Silicon graphics geometry partners directory, pp. 86, (Silicon Graphics, Mountain View, California 1991).

    Google Scholar 

  28. Brünger, A.T. X-PLOR: a system for X-Ray Crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1996).

    Google Scholar 

  29. Brünger, A.T. Nature 355, 472–475 (1992).

    Article  PubMed  Google Scholar 

  30. Laskovski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  Google Scholar 

  31. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Meritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique through the program Physique et Chimie du Vivant. We thank K. Brown and Y. Bourne for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjam Czjzek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnoux, P., Haser, R., Izadi, N. et al. The crystal structure of HasA, a hemophore secreted by Serratia marcescens. Nat Struct Mol Biol 6, 516–520 (1999). https://doi.org/10.1038/9281

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing