Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of E.coli RuvA with bound DNA Holliday junction at 6 Å resolution

Abstract

Here we present the crystal structure of the Escherichia coli protein RuvA bound to a key DNA intermediate in recombination, the Holliday junction. The structure, solved by isomorphous replacement and density modification at 6 Å resolution, reveals the molecular architecture at the heart of the branch migration and resolution reactions required to process Holliday intermediates into recombinant DNA molecules. It also reveals directly for the first time the structure of the Holliday junction. A single RuvA tetramer is bound to one face of a junction whose four DNA duplex arms are arranged in an open and essentially four-fold symmetric conformation. Protein–DNA contacts are mediated by two copies of a helix-hairpin-helix motif per RuvA subunit that contact the phosphate backbone in a very similar manner. The open structure of the junction stabilized by RuvA binding exposes a DNA surface that could be bound by the RuvC endonuclease to promote resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. West, S.C. Annu. Rev. Genet. 31, 213–244 (1997).

    Article  CAS  Google Scholar 

  2. Otsuji, N., Iyehara, H. & Hideshima, Y. J. Bacterial. 117, 337–344 (1974).

    CAS  Google Scholar 

  3. Lloyd, R.G., Benson, F.E. & Shurvinton, C.E. Mol. Gen. Genet. 194, 303–309 (1984).

    Article  CAS  Google Scholar 

  4. Benson, F., Collier, S. & Lloyd, R.G. Mol. Gen. Genet. 225, 266–272 (1991).

    Article  CAS  Google Scholar 

  5. Whitby, M.C., Bolt, E.L., Chan, S.N. & Lloyd, R.G. J. Mol. Biol. 264, 878–890 (1996).

    Article  CAS  Google Scholar 

  6. Rafferty, J.B. et al. Science 274, 415–421 (1996).

    Article  CAS  Google Scholar 

  7. Eggleston, A.K., Mitchell, A.H. & West, S.C. Cell 89, 607–617 (1997).

    Article  CAS  Google Scholar 

  8. van Gool, A.J., Shah, R., Mezard, C. & West, S.C. EMBO. J. 17, 1838–1845 (1998).

    Article  CAS  Google Scholar 

  9. Thayer, M.M., Ahern, H., Xing, D.X., Cunningham, R.P. & Tainer, J.A. EMBO J. 14, 4108–4120 (1995).

    Article  CAS  Google Scholar 

  10. Doherty, A.J., Serpell, L.C. & Ponting, C.P. Nucleic Acids Res. 24, 2488–2497 (1996).

    Article  CAS  Google Scholar 

  11. Rice, D.W., Rafferty, J.B., Artymiuk, P.J. & Lloyd, R.G. Curr. Opin. Struct. Biol. 7, 798–803 (1997).

    Article  CAS  Google Scholar 

  12. Hargreaves, D. et al. Acta. Crystallogr., in the press.

  13. Richmond, T.J., Finch, J.T., Rushton, B., Rhodes, D. & Klug, A. Nature 311, 532–537 (1984).

    Article  CAS  Google Scholar 

  14. Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. & Kraut, J. Science 264, 1891–1903 (1994).

    Article  CAS  Google Scholar 

  15. Pelletier, H., Sawaya, M.R., Wolfle, W., Wilson, S.H. & Kraut, J. Biochemistry 35, 12742–12761 (1996).

    Article  CAS  Google Scholar 

  16. Rafferty, J.B. et al. J. Mol. Biol. 278, 105–116 (1998).

    Article  CAS  Google Scholar 

  17. Guo, F., Gopaul, D.N. & Van Duyne, G.D. Nature 389, 40–46 (1997).

    Article  CAS  Google Scholar 

  18. Parsons, C.A., Tsaneva, I., Lloyd, R.G. & West, S.C. Proc. Nat. Acad. Sci. USA 89, 5452–5456 (1992).

    Article  CAS  Google Scholar 

  19. Yu, X., West, S.C. & Egelman, E.H. J Mol. Biol. 266, 217–222 (1997).

    Article  CAS  Google Scholar 

  20. Sharples, G.J., Benson, F.E., Illing, G.T. & Lloyd, R.G. Mol. Gen. Genet. 221, 219–226 (1990).

    Article  CAS  Google Scholar 

  21. Mandal, T.N., Mahdi, A.A., Sharples, G.J. & Lloyd, R.G. J Bacteriol. 175, 4325–4334 (1993).

    Article  CAS  Google Scholar 

  22. Ariyoshi, M. et al. Cell 78, 1063–1072 (1994).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Meth. Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  24. CCP4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  25. Otwinowski, Z. Proceedings of the CCP4 Study Weekend: Isomorphous Replacement and Anomalous Scattering, p80 (SERC Daresbury Laboratory, Warrington, U.K., 1991).

    Google Scholar 

  26. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter and Protein Crystallography 31, 34–38 (1994).

  27. Kleywegt, G.J. & Jones, T.A. Masks and Bones. Proceedings of the CCP4 Study Weekend: From First Map to Final Model, p59 (EPSRC Daresbury Laboratory, Warrington, UK., 1994).

    Google Scholar 

  28. Bennett, R.J., Dunderdale, H.J. & West, S.C. Cell 74, 1021–1031 (1993).

    Article  CAS  Google Scholar 

  29. Jones, T.A. J. Appl. Crystallogr. 11, 268–270 (1978).

    Article  CAS  Google Scholar 

  30. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. J Mol. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Rice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hargreaves, D., Rice, D., Sedelnikova, S. et al. Crystal structure of E.coli RuvA with bound DNA Holliday junction at 6 Å resolution. Nat Struct Mol Biol 5, 441–446 (1998). https://doi.org/10.1038/nsb0698-441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0698-441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing