Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance

An Erratum to this article was published on 01 July 1997

Abstract

The Erm family of methyltransferases is responsible for the development of resistance to the macrolide-lincosamide-streptogramin type B (MLS) antibiotics. These enzymes methylate an adenine of 23S ribosomal RNA that prevents the MLS antibiotics from binding to the ribosome and exhibiting their antibacterial activity. Here we describe the three-dimensional structure of an Erm family member, ErmAM, as determined by NMR spectroscopy. The catalytic domain of ErmAM is structurally similar to that found in other methyltransferases and consists of a seven-stranded β-sheet flanked by α-helices and a small two-stranded β-sheet. In contrast to the catalytic domain, the substrate binding domain is different from other methyltransferases and adopts a novel fold that consists of four α-helices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eady, E.A., Ross, J.I. & Cove, J.H. Multiple mechanisms of erythromycin resistance. J Antimcr. Chemo. 26, 461–471 (1990).

    Article  CAS  Google Scholar 

  2. Denoya, C. & Dubnau, D. Mono- and dimethylating activities and kinetic studies of the ermC 23 S rRNA methyltransferase. J. Biol. Chem. 264, 2615–2624 (1989).

    CAS  PubMed  Google Scholar 

  3. Qadri, S.M., Ueno, Y. & Cunha, B.A. Susceptibility of clinical isolates to expanded-spectrum beta-lactams alone and in the presence of beta-lactamase inhibitors. Chemotherapy 42, 334–342 (1996).

    Article  CAS  Google Scholar 

  4. Cheng, X., Kumar, S., Posfai, J., Pflugrath, J.W. & Roberts, R.J. Crystal structure of the Hhal DMA methyltransferase complexed with S-adenosyl-L-methionine. Cell 74, 299–307 (1993).

    Article  CAS  Google Scholar 

  5. Reinisch, K.M., Chen, L., Verdine, G.L. & Lipscomb, W.N. The crystal structure of Haelll methyltransferase covalently complexed to DNA: An extrahelical cytosine and rearranged base pairing. Cell 82, 143–153 (1995).

    Article  CAS  Google Scholar 

  6. Labahn, J. et al. Three-dimensional structure of the adenine-specific DNA methyltransferase M. Taq I in complex with the cofactor S-adenosylmethionine. Proc. Natl. Acad. Sci. USA 91, 10957–10961 (1994).

    Article  CAS  Google Scholar 

  7. Vidgren, J., Svensson, L.A. & Liljas, A. Crystal structure of catechol O-methyltransferase. Nature 368, 354–358 (1994).

    Article  CAS  Google Scholar 

  8. Fu, Z. et al. Crystal structure of glycine N-methyltransferase from rat liver. Biochemistry 35, 11985–11993 (1996).

    Article  CAS  Google Scholar 

  9. Hodel, A.E., Gershon, P.D., Shi, X. & Quiocho, F.A. The 1.85 Å structure of Vaccinia protein VP39: A bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85, 247–256 (1996).

    Article  CAS  Google Scholar 

  10. Grzesiek, S., Anglister, J., Ren, H. & Bax, A. 13C line narowing by 2H decoupling in 2H/13C/15N-enriched proteins. Application to triple resonance 4D J connectivity of sequential amides. J. Am. Chem. Soc. 115, 4369–4370 (1993).

    Article  CAS  Google Scholar 

  11. Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. & Kay, I.E. A suite of triple resonances NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).

    Article  CAS  Google Scholar 

  12. Torchia, D.A., Sparks, S.W. & Bax, A. Delineation of α-helical domains in deuteriated staphyloccal nuclease by 2D NOE NMR spectroscopy. J. Am. Chem. Soc. 110, 2320–2321 (1988).

    Article  CAS  Google Scholar 

  13. Grzesiek, S., Wingfield, P., Stahl, S., Kaufman, J.D. & Bax, A. Four-dimensional 15N-separated NOESY of slowly tumbling perdeuterated 15N-enriched proteins. Application to HIV-1 Nef. J. Am. Chem. Soc. 117, 9594–9595 (1995).

    Article  CAS  Google Scholar 

  14. Venters, R.A., Metzler, W.J., Spicer, L.D., Mueller, L. & Farmer II, B.T. Use of 1HN-1HN NOEs to determine protein global folds in perdeuterated proteins. J. Am. Chem. Soc. 117, 9592–9593 (1995).

    Article  CAS  Google Scholar 

  15. Malone, T., Blumenthal, R.M. & Cheng, X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618–632 (1995).

    Article  CAS  Google Scholar 

  16. Nagai, K. RNA-protein complexes. Curr. Opin. Struct. Biol. 6, 53–61 (1996).

    Article  CAS  Google Scholar 

  17. Berglund, H., Rak, A., Serganov, A., Garber, M. & Härd, T. Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus. Nature Struct. Biol. 4, 20–23 (1997).

    Article  CAS  Google Scholar 

  18. Xing, Y., GuhaThakurta, D. & Draper, D.E. The RNA binding domain of ribosomal protein L11 is structurally similar to homeodomains. Nature Struct. Biol. 4, 24–27 (1997).

    Article  CAS  Google Scholar 

  19. Kleywegt, G.J. & Jones, T.A. Where freedom is given, liberties are taken. Structure 3, 535–540 (1995).

    Article  CAS  Google Scholar 

  20. Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. & Kraut, J. Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. Science 264, 1891–1903 (1994).

    Article  CAS  Google Scholar 

  21. Su, S.L. & Dubnau, D. Binding of Bacillus subtilis ErmC′ methyltransferase to 23S ribosomal RNA. Biochemistry 29, 6033–6042 (1990).

    Article  CAS  Google Scholar 

  22. Trieu-Cuot, P., Poyart-Salmeron, C., Carlier, C. & Courvalin, P. Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Res. 18, 3660–3661 (1990).

    Article  CAS  Google Scholar 

  23. Clore, G.M. & Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Meths Enzymol. 239, 349–363 (1994).

    Article  CAS  Google Scholar 

  24. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DMA-binding domain of the 434 represser by biosynthetically directed fractional 13C labelling. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  Google Scholar 

  25. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  26. Kuszewski, J., Nilges, M. & Brünger, A.T. Sampling and efficacy of metric matrix distance geometry: a novel partial metrization algorithm. J. Biomol. NMR 2, 33–56 (1992).

    Article  CAS  Google Scholar 

  27. Brünger, A.T. X-PLOR Manual, Yale Univ. Press, Cambridge, MA, version 3.1 (1992).

  28. Fesik, S.W. & Zuiderweg, E.R.P. Heteronuclear three-dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra. J. Magn. Reson. 78, 588–593 (1988).

    Google Scholar 

  29. Kay, L.E., Clore, G.M., Bax, A. & Gronenborn, A.M. Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1β in solution. Science 249, 411–114 (1990).

    Article  CAS  Google Scholar 

  30. Kuboniwa, H., Grzesiek, S., Delaglio, F. & Bax, A. Measurement of HN-HαJ couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J. Biomol. NMR 4, 871–878 (1994).

    Article  CAS  Google Scholar 

  31. Kay, L.E. & Bax, A. New methods for the measurements of NH-CαH coupling constants in 15N-labeled proteins. J. Magn. Reson. 86, 110–126 (1990).

    CAS  Google Scholar 

  32. Seip, S., Balbach, J. & Kessler, H. Determination of the HN-Hα coupling constant in large isotopically enriched proteins. Angew. Chem. Int. Ed. 31, 1609–1611 (1992).

    Article  Google Scholar 

  33. Carson, M. Ribbon models of macromolecules. J. Molec. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  34. Nicholls, A.J., Sharp, K.A. & Honig, B. Protein folding and association: insights from interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  35. Brooks, B.R. et al. CHARMM: a program for macromolecular energy minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Fesik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Petros, A., Schnuchel, A. et al. Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Nat Struct Mol Biol 4, 483–489 (1997). https://doi.org/10.1038/nsb0697-483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0697-483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing