Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone

Abstract

Hsp90 is a highly specific chaperone for many signal transduction proteins, including steroid hormone receptors and a broad range of protein kinases. The crystal structure of the N-terminal domain of the yeast Hsp90 reveals a dimeric structure based on a highly twisted sixteen stranded β-sheet, whose topology suggests a possible 3D-domain-swapped structure for the intact Hsp90 dimer. The opposing faces of the β-sheets in the dimer define a potential peptide-binding cleft, suggesting that the N-domain may serve as a molecular ‘clamp’ in the binding of ligand proteins to Hsp90.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wiech, H., Buchner, J., Zimmermann, R. & Jakob, U. HSP90 chaperones protein folding in vitro. Nature 358, 169–170 (1992).

    Article  CAS  Google Scholar 

  2. Joab, I. et al. Common non-hormone binding component in non-transformed chick oviduct receptors of four natural steroids. Nature 308, 850–853 (1984).

    Article  CAS  Google Scholar 

  3. Wilhelmsson, A. et al. The specific DMA binding activity of the dioxin receptor is modulated by the 90 kDa heat-shock protein. EMBO. J. 9, 69–76 (1990).

    Article  CAS  Google Scholar 

  4. Opperman, H., Levinson, W. & Bishop, J.M. A cellular protein that associates with the transforming protein of Rous Sarcome Virus is also a heat-shock protein. Proc. Natl. Acad. Sci. USA 78, 1067–1071 (1981).

    Article  Google Scholar 

  5. Cutforth, T. & Rubin, G. Mutations in Hsp83 and CDC37 impair signalling by the Seveless receptor tyrosine kinase in Drosophila. Cell 77, 1027–1036 (1994).

    Article  CAS  Google Scholar 

  6. Aligue, R., Akhavannik, A. & Russell, P.A. A role for Hsp90 in cell-cycle control – Wee 1 tyrosine kinase activity requires interaction with Hsp90. EMBO J. 13, 6099–6106 (1994).

    Article  CAS  Google Scholar 

  7. Stancato, L.F. et al. Raf exists in a native heterocomplex with Hsp90 and p50 that can be reconstituted in a cell-free system. J. Biol. Chem. 268, 21711–21716 (1993).

    CAS  PubMed  Google Scholar 

  8. Dai, I., Kobayashi, R. & Beach, D. Physical interaction of mammalian CDC37 with CDK4. J. Biol. Chem. 271, 22030–22034 (1996).

    Article  CAS  Google Scholar 

  9. Chen, C.F. et al. A new member of the Hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat-shock. Mol. Cell. Biol. 16, 4691–4699 (1996).

    Article  CAS  Google Scholar 

  10. Sepehrnia, B., Paz, I.B., Dasgupta, G. & Momand, J. Heat shocked protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J. Biol. Chem. 271, 15084–15090 (1996).

    Article  CAS  Google Scholar 

  11. Czar, M.J. et al. Characterisation of the protein-protein interactions determining the heat shock protein (hsp90-hsp70-hsp56) heterocomplex. J. Biol. Chem. 269, 11155–11161 (1994).

    CAS  PubMed  Google Scholar 

  12. Bose, S., Weikl, T., Bügl, H. & Buchner, J. Chaperone function on Hsp90 – associated proteins. Science 274, 1715–1717 (1996).

    Article  CAS  Google Scholar 

  13. Freeman, B.C., Toft, D.O. & Morimoto, R.I. Molecular chaperone machines: Chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science 274, 1718–1720 (1996).

    Article  CAS  Google Scholar 

  14. Prodromou, C., Piper, P.W. & Pearl, L.H. Expression and crystallization of the yeast Hsp82 chaperone, and preliminary X-ray diffraction studies of the amino-terminal domain. Proteins Struct. Funct. Genet. 25, 517–522 (1996).

    CAS  PubMed  Google Scholar 

  15. Gupta, R.S. Phylogenetic analysis of the 90 kDa heat-shock family of protein sequences and an examination of the relationships among animals, plants and fungi species. Mol. Biol. Evol. 12, 1063–1073 (1995).

    CAS  Google Scholar 

  16. Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. 3D domain swapping - a mechanism for oligomer assembly. Prat. Sci. 4, 2455–2468 (1995).

    Article  CAS  Google Scholar 

  17. Minami, Y., Kawasaki, H., Miyata, Y., Suzuki, K. & Yahara, I. Analysis of native forms and isoform compositions of the mouse 90 kDa heat-shock protein Hsp90. J. Biol. Chem. 266, 10099–10103 (1991).

    CAS  PubMed  Google Scholar 

  18. Bresnick, E.H., Dalman, F.C. & Pratt, W.B. Direct stoichiometric evidence that the untransformed Mr 300,000, 9S, glucocorticoid receptor is a core unit derived from a larger heteromeric complex. Biochemistry 29, 520–527 (1990).

    Article  CAS  Google Scholar 

  19. Minami, Y., Kimura, Y., Kawasaki, H., Suzuki, K. & Yahara, I. The carboxy terminal region of mammalian Hsp90 is required for its dimerisation and function in vivo. Mol. Cell. Biol. 14, 1459–1464 (1994)

    Article  CAS  Google Scholar 

  20. Meng, X. et al. Mutational analysis of Hsp90a dimerisation and subcellular localisaton - dimer disruption does not impede in vivo interaction with estrogen receptor. J. Cell. Sci. 109, 1677–1687 (1996).

    CAS  PubMed  Google Scholar 

  21. Smith, D.F. et al. Progesterone receptor structure and function altered by geldanamycin, an Hsp90 binding agent. Mol. Cell. Biol. 15, 6804–6812 (1995).

    Article  CAS  Google Scholar 

  22. Kimura, Y., Yahara, I. & Lindquist, S. Role of the protein chaperone Ydj 1 in establishing Hsp90 medited signal-transduction pathways. Science 268, 1362–1365 (1993).

    Article  Google Scholar 

  23. Boguski, M.S., Sikorski, R.S., Heiter, P. & Goebl, M. Nature 346, 114 (1990).

    Article  CAS  Google Scholar 

  24. Smith, D.F. et al. Identification of a 60 kilodalton stress-related protein, p60, which interacts with hsp90 and hsp70. Mol. Cell. Biol. 13, 869–876 (1993).

    Article  CAS  Google Scholar 

  25. Ratajczak, T. et al. The cyclophilin component of the unactivated estrogen receptor contains a tetratricopeptide repeat domain and shares identity with p59 (FKBP59). J. Biol. Chem. 268, 13187–13192 (1993).

    CAS  PubMed  Google Scholar 

  26. Sanchez, E.R., Faber, L.E., Henzel, W.J. & Pratt, W.B. The 56–59 kilodalton protein identified in untransformed steroid receptor complexes is a unique protein that exists in cytosol in a complex with both the 70- and 90-kilodalton heat shock proteins. Biochemistry 29, 5145–5152 (1990).

    Article  CAS  Google Scholar 

  27. Johnson, J.L. & Toft, D.O. A novel chaperone complex for steroid receptors involving heat shock protein, immunophilins and p23. J. Biol. Chem. 269, 24989–24993 (1994).

    CAS  PubMed  Google Scholar 

  28. Smith, D.F. & Toft, D.O. Steroid receptors and their associated proteins. Mol. Endocrinol. 7, 4–11 (1993).

    CAS  PubMed  Google Scholar 

  29. Stepanova, L., Leng, X.H., Parker, S.B. & Harper, J.W. Mammalian p50 (CDC37) is a protein kinase targetting subunit of Hsp90 that binds and stabilises CDK4. Genes Develop. 10, 1491–1502 (1996).

    Article  CAS  Google Scholar 

  30. Brugge, J.S. Interactions of the Rous Sarcoma Virus protein pp60src with the cellular proteins pp50 and pp90. Curr. Top. Microbiol. Immunol. 123, 1–22 (1986).

    CAS  PubMed  Google Scholar 

  31. Nathan, D.F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol. 15, 3917–3925 (1995).

    Article  CAS  Google Scholar 

  32. Miyata, Y. & Yahara, I. Interaction between casein kinase II and the 90 kDa stress protein, Hsp90. Biochemistry 34, 8123–8129 (1995).

    Article  CAS  Google Scholar 

  33. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994).

    Article  CAS  Google Scholar 

  34. Sullivan, W.P. & Toft, D.O. Mutational analysis of Hsp90 binding to the progesterone receptor. J. Biol. Chem. 268, 20373–20379 (1993).

    CAS  PubMed  Google Scholar 

  35. Shaknovich, R., Schue, G. & Kohtz, D.S. Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine Hsp90 (Hsp84). Mol. Cell. Biol. 12, 5059–5068 (1992).

    Article  CAS  Google Scholar 

  36. Hoffman, K. & Handschumacher, R.E. Cyclophilin-40: evidence for a dimeric complex with hsp90. Biochem. J. 307, 5–8 (1995).

    Article  Google Scholar 

  37. Ratajczak, T. & Carrello, A. Cyclophilin-40 (Cyp-40), mapping of its Hsp90 binding domain and evidence that FKBP52 competes with Cyp-40 for Hsp90 binding. J. Biol. Chem. 271, 2961–2965 (1996).

    Article  CAS  Google Scholar 

  38. Owens-Grillo, J.K. et al. A model of protein targeting mediated by immunophilins and other proteins that bind to hsp90 via tetratricopeptide repeat domains. J. Biol. Chem. 271, 13468–13475 (1996).

    Article  CAS  Google Scholar 

  39. Radanyi, C., Chambraud, B. & Baulieu, E.E. The ability of the immunophilin FKBP59-HBI to interact with the 90 kDa heat-shock protein is encoded by its tetratricopeptide repeat domain. Proc. Natl. Acad. Sci. USA 91, 11197–11201 (1994).

    Article  CAS  Google Scholar 

  40. Sikorski, R.S., Boguski, M.S., Goebl, M. & Hieter, P. A repeating amino-acid motif defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60, 307–317 (1990).

    Article  CAS  Google Scholar 

  41. Hirano, T., Kinoshita, N., Morikawa, K. & Yanagida, M. Snap helix with knob and hole – essential repeats in S. pombe nuclear protein Nuc2+. Cell 60, 319–328 (1990).

    Article  CAS  Google Scholar 

  42. Johnson, J.L. & Toft, D.O. Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol. Endocrinol. 9, 670–678 (1995).

    CAS  PubMed  Google Scholar 

  43. Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996).

    Article  CAS  Google Scholar 

  44. Czar, M.J., Welsh, M.J. & Pratt, W.B. Immunofluorescence localization of the 90 kDa heat-shock protein to cytoskeleton. Eur. J. Cell. Biol. 70, 322–330 (1996).

    CAS  PubMed  Google Scholar 

  45. Leslie, A.G.W. ‘MOSFLM Users Guide’ Cambridge, U.K., MRC-LMB.

  46. Collaborative Computational Project No. 4 (1994) Acta Crystallogr. D50, 760–763 (1995).

  47. Brünger, A. ‘X-PLOR Version 3.1. A system for X-ray Crystallography and NMR’, (Yale University Press, New Haven, CT, USA, 1992).

    Google Scholar 

  48. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK - a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

  49. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models Acta. Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  50. Kraulis, P.J. MOLSCRIPT - a program to produce both detailed and schematic plots of prortein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  51. Merrit, E.A. & Murphy, M.E.P. Raster3D Version 2.0 – a program for photorealistic molecular graphics. Acta. Crystallogr. 50, 869–873 (1994).

    Google Scholar 

  52. Laskowski, R.A. SURFNET - A program for visualising molecular surfaces, cavities and intermolecular interactions. J. Mol. Graph. 13, 323–330 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prodromou, C., Roe, S., Piper, P. et al. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nat Struct Mol Biol 4, 477–482 (1997). https://doi.org/10.1038/nsb0697-477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0697-477

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing