Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein

Abstract

The trimeric parallel β-coil P22 tailspike contains eight cysteines per chain, but lacks disulphide bonds in the native state, in both the crystalline and solution forms. However, cysteines in a folding intermediate are reactive with thiol blocking reagents, which prevent further productive folding both in vivo and in vitro. The in vivo refolding yield was independent of the availability of metal ions, but was sensitive to redox potential. Isolation by nondenaturing gel electrophoresis of the protrimer intermediate, a trimeric folding intermediate that precedes the fully folded trimer in the in vivo and in vitro pathways, revealed the presence of interchain disulphide bonds. Incubation of the isolated protrimer with reducing agents generated the native trimer. The formation of β-sheets with interdigitated strands from different subunits in the native trimer may require the transient disulphide bonds for proper alignment. To our knowledge this is the first report of a disulphide bond present in a folding intermediate of a non-disulphide bonded protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Creighton, T.E. Proteins. Structures and Molecular Properties. 2nd ed. (W.H. Freeman and Company, New York, 1993).

    Google Scholar 

  2. Braakman, I., Hoover-Litty, H., Wagner, K.R., & Helenius, A. Folding of influenza hemagglutinin intheendoplasmicreticulum. J. Cell Biol. 114, 401–411 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Creighton, T.E. Conformation restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor. J. Mol. Biol., 113, 275–293 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Creighton, T.E. Effects of urea and guanidine-HCI on the folding and unfolding of pancreatic trypsin inhibitor. J. Mol. Biol. 113, 313–328 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Creighton, T.E. & Goldenberg, D.P. Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 179, 497–526 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Weissman, J.S. & Kim, P.S. The pro region of BPTI facilitates folding. Cell 71, 841–851 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Weissman, J.S. & Kim, P.S. Reexamination of the folding of BPTI: Predominance of native intermediates. Science 253, 1386–1393 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Fahey, R.C., Hunt, J.S. & Windham, G.C. On the cysteine and cystine content of proteins: Differences between intracellular and extracellular proteins. J. Mol. Evol. 10, 155–160 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Gilbert, H.F. Molecular and cellular aspects of thiol-disulfide exchange. in Advances in Enzymology (ed. Meister, A.) 69–173 (Wiley, New York, 1990).

    Google Scholar 

  10. Grubmeyer, C.T. & Gray, W.R. A cysteine residue (cysteine-116) in the histidinol binding site of histidinol dehydrogenase. Biochemistry 25, 4778–4784 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Sauer, R.T., Krovatin, W., Poteete, A.R., & Berget, P.B. Phage P22 tail protein: Gene and amino acid sequence. Biochemistry 21, 5811–5815 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Steinbacher, S. et al. Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Yoder, M.D., Keen, N.T., & Jurnak, R. New domain motif: The structure of pectate lyase C, a secreted plant virulence factor. Science 260, 1503–1507 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Baumann, U., Wu, S., Flaherty, K.M., & McKay, D.B. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12, 3357–3364 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldenberg, D., Berget, P., & King, J. Maturation of the tailspike endrorhamnoside of Salmonella phage P22. J. Biol. Chem. 257, 7864–7871 (1982).

    CAS  PubMed  Google Scholar 

  16. Goldenberg, D. & King, J. Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of bacteriophage P22. Proc. Natl. Acad. Sci. USA 79, 3403–3407 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haase-Pettingell, C.A. & King, J. Formation of aggregates from a thermolabile in-vivo folding intermediate in P22 tailspike maturation a model for inclusion body formation. J. Biol. Chem. 263, 4977–4983 (1988).

    CAS  PubMed  Google Scholar 

  18. Seckler, R., Fuchs, A., King, J. & Jaenicke, R. Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro. J. Biol. Chem. 264, 11750–11753 (1989).

    CAS  PubMed  Google Scholar 

  19. Fuchs, A., Seiderer, C. & Seckler, R. In vitro folding pathway of phage P22 tailspike protein. Biochemistry 30, 6598–6604 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Speed, M.A., Wang, D.I.C. & King, J. Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Prot. Sci. 4, 900–908 (1995).

    Article  CAS  Google Scholar 

  21. Danner, M. & Seckler, R. Mechanism of phage P22 tailspike protein folding mutations. Prot. Sci. 2, 1869–1881 (1993).

    Article  CAS  Google Scholar 

  22. Goldenberg, D.P., Smith, D.H. & King, J. Genetic analysis of the folding pathway for the tail spike of phage P22. Proc. Natl. Acad. Sci. USA 80, 7060–7064 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sargent, D., Benevides, J.M., Yu, M.-H., King, J. & Thomas Jr., G.J.T. Secondary structure and thermostability of the phage P22 tailspike: Analysis of raman spectroscopy of the wild type protein and a temperature-sensitive folding mutant. J. Mol. Biol. 199, 491–502 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Sather, S.K. & King, J. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide. J. Biol. Chem. 269, 25268–25276 (1994).

    CAS  PubMed  Google Scholar 

  25. Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry. (University Science Books, Mill Valley, California, 1994).

    Google Scholar 

  26. Hwang, C., Sinskey, A.J. & Lodish, H.F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496–1502 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Gilbert, H.F. The formation of native disulfide bonds. in Mechanisms of Protein Folding (ed. Pain, R.H.) 104–136 (IRL Press, New York, 1994).

    Google Scholar 

  28. Derman, A.I., Prinz, W.A., Belin, D. & Beckwith, J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Freedman, R.B. Protein folding in the cell in Protein Folding (ed. Creighton, T.E.) 455–539 (W.H. Freeman and Company, New York, 1992).

    Google Scholar 

  30. Winston, R., Botstein, D. & Miller, J. Characterization of amber and ochre suppressors in Salmonella typhimurium. J. Bacteriol. 137, 433–439 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. King, J. & Yu, M.-H. Mutational analysis of protein folding pathway using the P22 tailspike endorhamnosidase in Methods in Enzymology (eds Hirs, C.W.H. & Timashiff, S.) 250–266 (Academic Press, New York, 1986).

    Google Scholar 

  32. Yamamoto, K.R., Alberts, B.M., Benzinger, B., Lawhorne, L., & Treiber, G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40, 734–744 (1970).

    Article  CAS  PubMed  Google Scholar 

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning, A Laboratory Manual. (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  34. Kirley, T.L. Reduction and fluorescent labeling of cysteine-containing proteins for subsequent structural analyses. Anal. Biochem. 180, 231–236 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, A., King, J. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nat Struct Mol Biol 4, 450–455 (1997). https://doi.org/10.1038/nsb0697-450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0697-450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing