Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The X-ray structure of an anti-tumour antibody in complex with antigen

A Corrigendum to this article was published on 01 December 1996

Abstract

The crystal structures of the murine BR96 Fab and its human chimera have been determined in complex with the nonoate methyl ester derivative of Lewis Y (nLey) at 2.8 Å and 2.5 Å resolution, respectively. BR96 binds the carbohydrate in a large pocket which is formed by residues of all CDR loops except L2. The binding of the carbohydrate is mediated predominantly by aromatic residues in BR96. Analysis of the structure suggests that BR96 is capable of recognizing a structure larger than the Ley tetrasaccharide, providing a possible explanation for its high tumour selectivity. The structure provides a rationale for mutagenesis experiments that have resulted in BR96 CDR loop mutants with increased affinity for nLey and/or tumour cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hellström, K.E. & Hellström, I. Principles of tumour immunity: tumour antigens. In Biologic Therapy of Cancer (Eds, DeVita, V.T., Jr, Hellman, S., & Rosenberg, S.A.) 35–52. (J.B. Lippincott Co., Philadelphia; 1991).

    Google Scholar 

  2. Trail, P.A. et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261, 212–215 (1993).

    Article  CAS  Google Scholar 

  3. Hellström, I., Garrigues, H.J., Garrigues, U. & Hellström, K.E. Highly tumour-reactive, internalizing, mouse monoclonal antibodies to Ley-related cell surface antigens. Cancer Res. 50, 2183–2190 (1990).

    PubMed  Google Scholar 

  4. Hakomori, S. Aberrant glycosylation in tumours and tumour-associated carbohydrate antigens. Advan. Cancer Res. 52, 257–331 (1989).

    Article  CAS  Google Scholar 

  5. Garrigues, J., Anderson, J., Hellström, K.E., Hellström, I., Mab BR96 blocks cell migration and binds to lysosomal membrane glycoprotein on cell surface microspikes and ruffled membranes. J. cell. Biol. 125, 129–142 (1994).

    Article  CAS  Google Scholar 

  6. Garrigues, J., Garrigues, U., Hellström, I. & Hellström, K.E. Ley specific antibody with potent anti-tumour activity is internalized and degraded in lysosomes. Am. J. Pathol. 142, 607–622 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Willner, D. et al. (6-Maleimidocaproyl)hydrazone of doxorubicin–a new derivative for the preparation of immunoconjugates of doxorubicin. Bioconjugate Chem. 4, 521–527 (1993).

    Article  CAS  Google Scholar 

  8. Yelton, D.E. et al. Affinity maturation of the BR96 anticarcinoma antibody in vitro by codon-based mutagenesis. J. Immunol. in the press.

  9. Bajorath, J. Three-dimensional model of the BR96 monoclonal antibody variable fragment. Bioconjugate Chem. 5, 213–219 (1994).

    Article  CAS  Google Scholar 

  10. Chang, C.Y., Jeffrey, P.D., Bajorath, J., Hellström, I., Hellström, K.E. & Sheriff, S. Crystallization and preliminary X-ray analysis of the monoclonal anti-tumour antibody BR96 and its complex with the Lewis Y determinant. J. molec. Biol. 235, 372–376 (1994).

    Article  CAS  Google Scholar 

  11. Sheriff, S. Some methods for examining the interactions between two molecules. ImmunoMethods 3, 191–196 (1993).

    Article  CAS  Google Scholar 

  12. Connolly, M.L. Analytical molecular surface calculation. J. appl. Crystallogr. 16, 548–558 (1983).

    Article  CAS  Google Scholar 

  13. Novotny, J., Bruccoleri, R.E. & Saul, F.A. On the attribution of binding energy in antigen—antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry 28, 4735–4749 (1989).

    Article  CAS  Google Scholar 

  14. Pastan, I., Lovelace, E.T., Gallo, M.G., Rutherford, A.V., Magnani, J.L. & Willingham, M.C. Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas. Cancer Res. 51, 3781–3787 (1991).

    CAS  Google Scholar 

  15. Kaneko, T. et al. Preparation of mouse-human chimeric antibody to an embryonic carbohydrate antigen, Lewis Y. J. Biochem, Tokyo 113, 114–117 (1993).

    Article  CAS  Google Scholar 

  16. Cygler, M., Rose, D.R. & Bundle, D.R. Recognition of a cell-surface oligosaccharide of pathogenic Salmonella by an antibody Fab fragment. Science 253, 442–445 (1991).

    Article  CAS  Google Scholar 

  17. Bundle, D.R. et al. Molecular recognition of a Salmonella trisaccharide epitope by monoclonal antibody Se155-4. Biochemistry 33, 5172–5182 (1994).

    Article  CAS  Google Scholar 

  18. Bundle, D.R., Baumann, H., Brisson, J.-R., Gagné, S.M., Zdanov, A. & Cygler, M. Solution structure of a trisaccharide-antibody complex: comparison of NMR measurements with a crystal structure. Biochemistry 33, 5183–5192 (1994).

    Article  CAS  Google Scholar 

  19. Padlan, E.A. & Kabat, E.A. Modeling of antibody combining sites. Meths Enzymol. 203, 3–21 (1991).

    Article  CAS  Google Scholar 

  20. Quiocho, F.A. Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. A. Rev. Biochem. 55, 287–315 (1986).

    Article  CAS  Google Scholar 

  21. Vyas, N.K. Atomic features of protein-carbohydrate interactions. Curr. Opin. Struct. Biol. 1, 732–740 (1991).

    Article  CAS  Google Scholar 

  22. Bundle, D.R. & Young, N.M. Carbohydrate—protein interactions in antibodies and lectins. Curr. Opin. struct. Biol. 2, 666–673 (1992).

    Article  CAS  Google Scholar 

  23. Padlan, E.A. On the nature of antibody combining sites: unusual structural features that may confer on these site an enhanced capacity for binding ligands. Proteins Struct. Funct. Genet. 7, 112–124 (1990).

    Article  CAS  Google Scholar 

  24. Chothia, C. et al. The conformations of immunoglobulin hypervariable regions. Nature 342, 877–883 (1989).

    Article  CAS  Google Scholar 

  25. Fitzgerald, P.M.D. MERLOT, an integrated package of computer programs for the determination of crystal structures by molecular replacement. J. appl. Crystallogr. 21, 273–278 (1988).

    Article  CAS  Google Scholar 

  26. Fujinaga, M. & Read, R.J. Experiences with a new translation-function program. J. appl. Crystallogr. 20, 517–521 (1987).

    Article  Google Scholar 

  27. Brünger, A.T. Solution of a fab (26-10)/digoxin complex by generalized molecular replacement. Acta crystallogr. A 47, 195–204 (1991).

    Article  Google Scholar 

  28. Brünger, A.T. X-PLOR version 3.1: A system for X-ray crystallography and NMR. Yale University Press, New Haven (1992).

    Google Scholar 

  29. Rini, J.M., Schulze-Gahmen, U. & Wilson, I.A. Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 255, 959–965 (1992).

    Article  CAS  Google Scholar 

  30. Jeffrey, P.D., Schildbach, J.F., Chang, C.Y., Kussie, P., Margolies, M.N. & Sheriff, S. Structure and specificity of the anti-digoxin antibody 40-50. J. molec. Biol., 248, 344–360 (1995).

    CAS  PubMed  Google Scholar 

  31. Stanfield, R.L., Fieser, T.M., Lerner, R.A. & Wilson, L.A. Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 Å. Science 248, 712–719 (1990).

    Article  CAS  Google Scholar 

  32. Cygler, M. & Anderson, W.F. Application of the molecular replacement method to multidomain proteins.1. determination of the orientation of an immunoglobulin Fab fragment. Acta crystallogr. A44, 38–45 (1988).

    Article  CAS  Google Scholar 

  33. Sack, J.S. CHAIN—a crystallographic modeling program. J. molec. Graph. 6, 224–225 (1988).

    Article  Google Scholar 

  34. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  35. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. prot. Chem. 34, 167–339 (1981).

    CAS  Google Scholar 

  36. Gelin, B.R. & Karplus, M. Side-chain torsional potentials: effect of dipeptide, protein and solvent environment. Biochemistry 18, 1256–1268 (1979).

    Article  CAS  Google Scholar 

  37. Luzzati, V. Traitement statistique des erreurs dans la determination des structures cristallines. Acta crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  38. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeller, C. Sequences of proteins of immunological interest (National Institutes of Health, Bethesda, MD) (1991).

    Google Scholar 

  39. Carson, M. Ribbons 2.0. J. appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  40. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffrey, P., Bajorath, J., Chang, C. et al. The X-ray structure of an anti-tumour antibody in complex with antigen. Nat Struct Mol Biol 2, 466–471 (1995). https://doi.org/10.1038/nsb0695-466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0695-466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing