Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Design of a discretely folded mini-protein motif with predominantly β-structure

Abstract

Here we report the creation of a predominantly β-structured mini-protein motif. The design target is based on the naturally occurring toxin hand (TH) motifs that are composed of four disulfide bonds and three loops that form a 'hand'. Analysis and subsequent modification of several generations of mini-proteins produced the final 29-residue mini-protein. The structured motif of this new mini-protein provides insight into the compensatory changes that result in the formation of a tightly packed hydrophobic core in a small, globular β-structure motif. Additionally, this mini-motif represents a new, distinct surface topology for protein design and a valuable, yet compact, model system for the study of β-sheet structure in water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagrams of the toxin hand motifs.
Figure 2: Peptides synthesized in the process of developing a discretely folded motif.
Figure 3: Key NMR data for TH-1ox, TH-10Aox and TH-10Box.
Figure 4: NMR-derived structures.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cunningham, B.C. & Wells, J.A. Curr. Opin. Struct. Biol. 7, 457–462 (1997).

    Article  CAS  Google Scholar 

  2. Imperiali, B. & Ottesen, J.J. J. Peptide Res. 54, 177–184 (1999).

    Article  CAS  Google Scholar 

  3. DeGrado, W.F., Summa, C.M., Pavone, V., Nastri, F. & Lombardi, A. Annu. Rev. Biochem. 68, 779–819 (1999).

    Article  CAS  Google Scholar 

  4. Gellman, S.H. Curr. Opin. Chem. Biol. 2, 717–725 (1998).

    Article  CAS  Google Scholar 

  5. Lacroix, E. et al. Curr. Opin. Struct. Biol. 9, 487–493 (1999).

    Article  CAS  Google Scholar 

  6. Schenck, H.L. & Gellman, S.H. J. Am. Chem. Soc. 120, 4869–4870 (1998).

    Article  CAS  Google Scholar 

  7. Sharman, G.J. & Searle, M.S. J. Am. Chem. Soc. 120, 5291–5300 (1998).

    Article  CAS  Google Scholar 

  8. Kortemme, T., Ramierez-Alvarado, M. & Serrano, L. Science 281, 253–256 (1998).

    Article  CAS  Google Scholar 

  9. Kraulis, P.J. et al. Biochemistry 28, 7241–7257 (1989).

    Article  CAS  Google Scholar 

  10. Endo, T. & Tamiya, N. In International encyclopedia of pharmacology and therapeutics: snake toxins (ed. Harvey, A.L.) 165–222 (Pergamon Press, New York; 1991).

    Google Scholar 

  11. Falkenstein, R.J., Pena, C. & Bonino, M.J.B.D. Int. J. Pept. Prot. Res. 47, 167–176 (1996).

    Article  CAS  Google Scholar 

  12. Hutchinson, E.G. & Thornton, J.M. Protein Sci. 3 2207–2216 (1994).

    Article  CAS  Google Scholar 

  13. Stanger, H.E. & Gellman, S.H. J. Am. Chem. Soc. 120, 4236–4237 (1998).

    Article  CAS  Google Scholar 

  14. Merkel, J.S. & Regan, L. Folding Des. 3, 449–455 (1998).

    Article  CAS  Google Scholar 

  15. Smith, C.K. & Regan, L., Science, 270, 980–982 (1995).

    Article  CAS  Google Scholar 

  16. Wouters, M.A. & Curmi, P.M.G. Protein Struct. Func. Genet. 22, 119–131 (1995).

    Article  CAS  Google Scholar 

  17. Wishart, D.S., Sykes, B.D. & Richards, F.M. Biochemistry 31, 1647–1651 (1992).

    Article  CAS  Google Scholar 

  18. Chongwoo, A.K. & Berg, J.A. Nature 362, 267–270 (1993).

    Article  Google Scholar 

  19. Leszczynski, J.F. & Rose, G.D. Science 234, 849–855 (1986).

    Article  CAS  Google Scholar 

  20. Fetrow, J. FASEB J. 9, 708–717 (1995).

    Article  CAS  Google Scholar 

  21. Han, Y.X., Albericio, F. & Barany, G. J. Org. Chem. 62, 4307–4312 (1997).

    Article  CAS  Google Scholar 

  22. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. In Analytical ultracentrifugation in biochemistry and polymer science (eds Harding, S.E., Rowe, A.J. & Horton, J.C.) 90–125 (Royal Society of Chemistry, Cambridge, UK; 1992).

    Google Scholar 

  23. Struthers, M.D., Ottesen, J.J. & Imperiali, B. Folding Des. 3, 95–104 (1998).

    Article  CAS  Google Scholar 

  24. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  25. Laskowski, R.A., Rullman, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J. Biomol. NMR, 8 (1996).

Download references

Acknowledgements

This research was supported by the NSF. The award of NSF predoctoral fellowship to J.J.O., the Multiuser Facility for the Study of Complex Macromolecular Systems, the Francis Bitter Magnet Labs and the Department of Chemistry Instrumentation Facility are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Imperiali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottesen, J., Imperiali, B. Design of a discretely folded mini-protein motif with predominantly β-structure. Nat Struct Mol Biol 8, 535–539 (2001). https://doi.org/10.1038/88604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88604

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing