Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structures of nucleotide exchange intermediates in the eEF1A–eEF1Bα complex


In the elongation cycle of protein biosynthesis, the nucleotide exchange factor eEF1Bα catalyzes the exchange of GDP bound to the G-protein, eEF1A, for GTP. To obtain more information about the recently solved eEF1A–eEF1Bα structure, we determined the structures of the eEF1A–eEF1Bα–GDP–Mg2+, eEF1A–eEF1Bα–GDP and eEF1A–eEF1Bα–GDPNP complexes at 3.0, 2.4 and 2.05 Å resolution, respectively. Minor changes, specifically around the nucleotide binding site, in eEF1A and eEF1Bα are consistent with in vivo data. The base, sugar and α-phosphate bind as in other known nucleotide G-protein complexes, whereas the β- and γ-phosphates are disordered. A mutation of Lys 205 in eEF1Bα that inserts into the Mg2+ binding site of eEF1A is lethal. This together with the structures emphasizes the essential role of Mg2+ in nucleotide exchange in the eEF1A–eEF1Bα complex.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron densities around the nucleotides after the final refinement.
Figure 2: The exchange mechanism.
Figure 3: The role of Lys 205 in eEF1Bα.

Accession codes


Protein Data Bank


  1. Merrick, W.C. & Nyborg, J. In Translational control of gene expression (eds Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.), 89–126 (Cold Spring Harbor Laboratory Press, New York; 2000).

    Google Scholar 

  2. Edmonds, B.T., Bell, A., Wyckoff, J., Condeelis, J. & Leyh, T.S. J. Biol. Chem. 273, 10288–10295 (1998).

    Article  CAS  Google Scholar 

  3. Janssen, G.M. & Moller, W. J. Biol. Chem. 263, 1773–1778 (1988).

    CAS  PubMed  Google Scholar 

  4. Andersen G. et al. Mol. Cell 6, 1261–1266 (2000).

    Article  CAS  Google Scholar 

  5. Kawashima, T., Bethet-Colominas, C., Wulff, M., Cusack, S. & Leberman, R. Nature 379, 511–518 (1996).

    Article  CAS  Google Scholar 

  6. Wang, Y., Jiang, Y., Meyering-Voss, M., Sprinzl, M. & Sigler, P.B. Nature Struct. Biol. 4, 650–656 (1997).

    Article  CAS  Google Scholar 

  7. Goldberg, J. Cell 95, 237–248 (1998).

    Article  CAS  Google Scholar 

  8. Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. & Kuriyan, J. Nature 394, 337–343 (1998).

    Article  CAS  Google Scholar 

  9. Worthylake D.K., Rossman, K.L. & Sondek, J. Nature 408, 682–688 (2000).

    Article  CAS  Google Scholar 

  10. Sprang, S.R. & Coleman, D.E. Cell 95, 155–158 (1998).

    Article  CAS  Google Scholar 

  11. Carr-Schmid, A., Durko, N., Cavallius, J., Merrick, W.C. & Kinzy, T.G. J. Biol. Chem. 274, 30297–30302 (1999).

    Article  CAS  Google Scholar 

  12. Carr-Schmid, A. et al. Mol. Cell Biol. 19, 5257–5266 (1999).

    Article  CAS  Google Scholar 

  13. Dinman, J.D. & Kinzy, T.G. RNA 3, 870–881 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sandbaken, M.G. & Culbertson, M.R. Genetics 141, 481–489 (1995).

    Google Scholar 

  15. Kinzy, T.G., Woolford, J.L., Jr. Genetics 141, 481–489 (1995).

    CAS  PubMed  Google Scholar 

  16. Pan, J.Y. & Wessling-Resnick, M. Bioessays 20, 516–521 (1998).

    Article  CAS  Google Scholar 

  17. John, J. et al. J. Biol. Chem. 268, 923–929 (1993).

    CAS  PubMed  Google Scholar 

  18. Cherfils, J. & Chardin, P. Trends Biochem. Sci. 24, 306–311 (1999).

    Article  CAS  Google Scholar 

  19. Wittinghofer, F. Nature 394, 317–320 (1998).

    Article  CAS  Google Scholar 

  20. Beraud-Dufour, S. et al. EMBO J. 17, 3651–3659 (1998).

    Article  CAS  Google Scholar 

  21. Van Damme, H.T., Amons, R. & Moller, W. Eur. J. Biochem. 207, 1025–1034 (1992).

    Article  CAS  Google Scholar 

  22. Pedersen, L.P., Andersen, G.R., Knudsen, C.K., Kinzy, T.G. & Nyborg, J. Acta Crystallogr. D 57, 159–161 (2000).

    Article  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  24. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  25. Jones, T.A., Cowan, S., Zou, J.-Y. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Koradi, R., Billeter, M. & Wuthrich, K. J. Mol. Graph. 14, 29–32 (1996).

    Article  Google Scholar 

  27. Boeke, J.D., Trueheart, J., Natsoulis, G. & Fink, G.R. Methods Enzymol. 154, 164–175 (1987).

    Article  CAS  Google Scholar 

  28. Sprang, S.R. Annu. Rev. Biochem. 66, 629–678 (1997).

    Article  Google Scholar 

Download references


We are grateful to K. Djinovic at ELETTRA, Trieste, for help during data collection. GRA was supported by Aarhus University. J.N. was supported by the Program for Biotechnological Research of the Danish Natural Science Research Council, DANSYNC, and the EU. T.G.K. was supported by the NIH and the NSF and L.V. by NIH.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gregers Rom Andersen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andersen, G., Valente, L., Pedersen, L. et al. Crystal structures of nucleotide exchange intermediates in the eEF1A–eEF1Bα complex. Nat Struct Mol Biol 8, 531–534 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing