Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase

Abstract

Accurate translation of the genetic code depends on the ability of aminoacyl-tRNA synthetases to distinguish between similar amino acids. In order to investigate the basis of amino acid recognition and to understand the role played by the zinc ion present in the active site of threonyl-tRNA synthetase, we have determined the crystal structures of complexes of an active truncated form of the enzyme with a threonyl adenylate analog or threonine. The zinc ion is directly involved in threonine recognition, forming a pentacoordinate intermediate with both the amino group and the side chain hydroxyl. Amino acid activation experiments reveal that the enzyme shows no activation of isosteric valine, and activates serine at a rate 1,000-fold less than that of cognate threonine. This study demonstrates that the zinc ion is neither strictly catalytic nor structural and suggests how the zinc ion ensures that only amino acids that possess a hydroxyl group attached to the β-position are activated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The active site of ΔN-ThrRS with Thr-AMS ligand.
Figure 2: Comparison of threonine, Thr-AMS and Ser-AMS ligands as seen bound to their respective aaRS
Figure 3: Activation experiments with cognate and noncognate amino acids.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Meinnel, T., Mechulam, Y. & Blanquet, S. In Aminoacyl-tRNA synthetase: occurence, structure, and function (Söll, D. & RajBhandary, U.L. eds) 251–291 (ASM Press, Washington DC; 1995).

    Google Scholar 

  2. Fersht, A. Enzyme, structure and mechanism (W. H. Freeman and Company, New York; 1985).

    Google Scholar 

  3. Jakubowski, H. & Goldman, E. Microbiol. Rev. 56, 412–429 (1992).

    Article  CAS  Google Scholar 

  4. Baldwin, A.N. & Berg, P. J. Biol. Chem. 241, 839–845 (1966).

    Article  CAS  Google Scholar 

  5. Loftfield, R.B. & Vanderjagt, M.A. Biochem. J. 128, 1353–1356 (1972).

    Article  CAS  Google Scholar 

  6. Schmidt, E. & Schimmel, P. Science 264, 265–267 (1994).

    Article  CAS  Google Scholar 

  7. Nureki, O. et al. Science 280, 578–582 (1998).

    Article  CAS  Google Scholar 

  8. Fersht, A.R. Science 280, 541 (1998).

    Article  CAS  Google Scholar 

  9. Lin, L., Hale, S.P. & Schimmel, P. Nature 384, 33–34 (1996).

    Article  CAS  Google Scholar 

  10. Silvian, L.F., Wang, J. & Steitz, T.A. Science 285, 1074–1077 (1999).

    Article  CAS  Google Scholar 

  11. Nomanbhoy, T.K., Hendrickson, T.L. & Schimmel, P. Mol. Cell 4, 519–528 (1999).

    Article  CAS  Google Scholar 

  12. Tsui, W.C. & Fersht, A.R. Nucleic Acids Res. 9, 4627–4637 (1981).

    Article  CAS  Google Scholar 

  13. Sankaranarayanan, R. et al. Cell 97, 371–381 (1999).

    Article  CAS  Google Scholar 

  14. Arnez, J.G. & Moras, D. Trends Biochem. Sci. 22, 211–216 (1997).

    Article  CAS  Google Scholar 

  15. Alberts, I.L., Nadassy, K. & Wodak, S.J. Protein Sci. 7, 1700–1716 (1998).

    Article  CAS  Google Scholar 

  16. Cavarelli, J. et al. EMBO J. 13, 327–337 (1994).

    Article  CAS  Google Scholar 

  17. Belrhali, H. et al. Science 263, 1432–1436 (1994).

    Article  CAS  Google Scholar 

  18. Arnez, J.G., Augustine, J.G., Moras, D. & Francklyn, C.S. Proc. Natl. Acad. Sci. 94, 7144–7149 (1997).

    Article  CAS  Google Scholar 

  19. Schmitt, E. et al. EMBO J. 17, 5227–5237 (1998).

    Article  CAS  Google Scholar 

  20. Eigner, E.A. & Loftfield, R.B. Methods Enzymol. 29, 601–619 (1974).

    Article  CAS  Google Scholar 

  21. Igloi, G.L., von der Haar, F. & Cramer, F. Methods Enzymol. 59, 282–291 (1979).

    Article  CAS  Google Scholar 

  22. Fersht, A.R., Shindler, J.S. & Tsui, W.C. Biochemistry 19, 5520–5524 (1980).

    Article  CAS  Google Scholar 

  23. Christner, P., Carpousis, A., Harsch, M. & Rosenbloom, J. J. Biol. Chem. 250, 7623–7630 (1975).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  28. Collaborative Computational Project Number 4. CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  29. Evans, S.V. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  30. Hodel, A., Kim, S.-H. & Brunger, A.T. Acta Crystallogr. A 48, 851–859 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Schimmel for a critical reading of the manuscript. We would like to acknowledge the encouragement and support received from M. Springer, B. Ehresmann and C. Ehresmann. This work was supported by grants from an EEC project, CNRS, INSERM, ULP, and Ministère de la Recherche et de la Technologie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Moras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankaranarayanan, R., Dock-Bregeon, AC., Rees, B. et al. Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nat Struct Mol Biol 7, 461–465 (2000). https://doi.org/10.1038/75856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing