Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and interactions of NCAM modules 1 and 2, basic elements in neural cell adhesion

Abstract

The structure in solution of the second Ig-module fragment of residues 117–208 of NCAM has been determined. Like the first Ig-module of residues 20–116, it belongs to the I set of the immunogloblin superfamily. Module 1 and module 2 interact weakly, and the binding sites of this interaction have been identified. The two–module fragment NCAM(20–208) is a stable dimer. Removal of the charged residues in these sites in NCAM(20–208) abolishes the dimerization. Modeling the dimer of NCAM(20–208) to fit the interactions of these charges produces one coherent binding site for the formation of two antiparallel strands of the first two NCAM modules. This mode of binding could be a major element in trans–cellular interactions in neural cell adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of module 2 of NCAM as determined by NMR spectroscopy.
Figure 2: Identification of residues in the binding sites in module 1 and 2 using chemical shift changes for 15N and 1H resonance lines of the H-N groups.
Figure 3: The electrostatic surfaces of the two modules and their binding sites.
Figure 4: Upfield and downfield regions of 750 MHz 1H NMR spectra of:
Figure 5: Titration curve from the changes of the chemical shift of the 15N resonance line of Glu 198 in a titration experiment where unlabeled module 1 was added to 15N-labeled module 2.
Figure 6: Model building of the dimer of NCAM(20–208) in a MOLMOL ribbon presentation.
Figure 7: The dimer of NCAM(20–208).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wagner, G. & Wyss, F. Cell surface adhesion receptors. Curr. Opin. Struct. Biol. 4, 841–851 (1994).

    Article  CAS  Google Scholar 

  2. Cremer, H. et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459 ( 1994).

    Article  CAS  Google Scholar 

  3. Cunningham, B.A. et al. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236, 799–806 ( 1987).

    Article  CAS  Google Scholar 

  4. Noble, M. et al. Glial cells express N-CAM/D2-CAM-like polypeptides in vitro. Nature 316, 725–728 (1985).

    Article  CAS  Google Scholar 

  5. Edelman, G.M. & Crossin, K.L. Cell adhesion molecules: implication for a molecular histology. Annu. Rev. Biochem. 60, 155–190 (1991).

    Article  CAS  Google Scholar 

  6. Moran, N. & Bock, E. Characterization of the kinetics of neural cell adhesion molecule homophilic binding. FEBS Lett. 242, 121–124 (1988).

    Article  CAS  Google Scholar 

  7. Ranheim, T.S., Edelman, G.M. & Cunningham, B.A. Homophilic binding mediated by the neural cell adhesion molecule involves multiple immunoglobulin domains. Proc. Natl. Acad. Sci. USA 93, 4071–4075 (1996).

    Article  CAS  Google Scholar 

  8. Rao, Y., Wu, X.-F., Gariepy, J., Rutishauser, U. & Siu, C.-H. Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM. J. Cell Biol. 118, 937–949 (1992).

    Article  CAS  Google Scholar 

  9. Rao, Y., Wu, X.-F., Yip, P., Gariepy, J. & Siu, C.-H. Structural characterization of a homophilic binding site in the neural cell adhesion molecule. J. Biol. Chem. 268, 20630–20638 (1993).

    CAS  PubMed  Google Scholar 

  10. Rao, Y., Zhao, X. & Siu, C.-H. Mechanism of homophilic binding mediated by the neural cell adhesion molecule NCAM. J. Mol. Biol. 269, 27540–27548 (1994).

    CAS  Google Scholar 

  11. Sandig, M., Rao, Y. & Siu, C.-H. The homophilic binding site of the neural cell adhesion molecule NCAM is directly involved in promoting neurite outgrowth from cultured neural retinal cells. J. Biol. Chem. 269, 14841– 14848 (1994).

    CAS  PubMed  Google Scholar 

  12. Kiselyov, V.K. et al. The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding. J. Biol. Chem. 272, 10125–10134 ( 1997).

    Article  CAS  Google Scholar 

  13. Becker, J.W., Erickson, H.P., Hoffman, S., Cunningham, B.A. & Edelman, G.M. Topology of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 86, 1088 – 1092 (1989).

    Article  CAS  Google Scholar 

  14. Frei, T., von Bohlen und Halbach, F., Wille, W. & Schachner, M. Different extracellular domains of the neural cell adhesion molecule (NCAM) are involved in different functions. J. Cell Biol. 118, 177–194 (1992).

    Article  CAS  Google Scholar 

  15. Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol. 238, 528–539 ( 1994).

    Article  CAS  Google Scholar 

  16. Hoffman, S. & Edelman, G.M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc. Natl. Acad. Sci. USA 80, 5762– 5766 (1983).

    Article  CAS  Google Scholar 

  17. Baldwin, T.J., Fazli, M.S., Doherty, P. & Walsh, F.S. Elucidation of molecular actions of NCAM and structurally related adhesion molecules. J. Cell Biochem. 61, 501–513 (1994).

    Google Scholar 

  18. Thomsen, N.K. et al. The three-dimensional structure of the first domain of neural cell adhesion molecule. Nature Struct. Biol. 3, 581–585 (1996).

    Article  CAS  Google Scholar 

  19. Chothia, C. & Jones, E.Y. The molecular structure of cell adhesion molecules. Annu. Rev. Biochem. 66, 823–862 (1997).

    Article  CAS  Google Scholar 

  20. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 ( 1980).

    Article  CAS  Google Scholar 

  21. Meissner, A., Schulte-Herbrüggen, T., Briand, J. & Sørensen, O.W. Double spin-state-selective coherence transfer. Application for two-dimensional selection of multiplet components with long transverse relaxation times. Molecular Physics 95, 1137–1142 (1998).

    CAS  Google Scholar 

  22. Brünger, A.T. X-PLOR version 3.1: A system for X-ray crystallography and NMR (Yale University, New Haven Connecticut; 1992).

    Google Scholar 

  23. Braunsweiler, L. & Ernst, R.R. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528 (1983).

    Google Scholar 

  24. Kumar, A., Wagner, G., Ernst, R.R. & Wüthrich, K. Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy: implications for studies of protein conformation. J. Am. Chem. Soc. 103, 3654 – 3658 (1981).

    Article  CAS  Google Scholar 

  25. Piantini, U., Sørensen, O.W. & Ernst, R.R. Multiple quantum filters for elucidating NMR coupling networks. J. Am. Chem. Soc. 104, 6800– 6801 (1982).

    Article  CAS  Google Scholar 

  26. Zhang, O., Kay, L.E., Olivier, J.P. & Forman-Kay, J.D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR. 4, 845–858 (1994).

    Article  CAS  Google Scholar 

  27. Kjær, M., Andersen, M.K. & Poulsen, F.M. Automated and semiautomated analysis of homo- and heteronuclear multidimensional nuclear magnetic resonance spectra of proteins: the program Pronto. Methods Enzymol. 239, 288–307 (1994).

    Article  Google Scholar 

  28. Nicholls, A. GRASP: graphical representation and analysis of surface properties. (Columbia University Press, New York, NY; 1993).

    Google Scholar 

Download references

Acknowledgements

The group at the Protein Laboratory was supported by the Danish Biotechnology Programme, The Lundbeck Foundation, the Danish Cancer Society, and The EU programme on Biotechnology. The group at the Carlsberg Laboratory was supported by The Danish Biotechnology Programme. This is a contribution from the Danish Instrument Center for NMR spectroscopy of Biological Macromolecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flemming M. Poulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, P., Soroka, V., Thomsen, N. et al. Structure and interactions of NCAM modules 1 and 2, basic elements in neural cell adhesion. Nat Struct Mol Biol 6, 486–493 (1999). https://doi.org/10.1038/8292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing