Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis of autoregulation of phenylalanine hydroxylase

Abstract

Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an α-β sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Structure of PheOH-24.
Figure 3: Regulation of PheOH.
Figure 4: Alignment of aromatic amino acid hydroxylases (rat sequences, SwissProt accession numbers: PheOH, P04176; TrpOH, P09810; TyrOH, P04177).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hufton, S.E., Jennings, I.G. & Cotton, R.G.H. Biochem. J. 311, 353– 366 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kappock, T.J. & Caradonna, J.P. Chem. Rev. 96, 2659–2756 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Nowacki, P., Byck, S., Prevost, L. & Scriver, C.R. Nucleic Acids Res. 25, 139–142 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kobe, B. et al. Protein Sci. 6, 1352–1357 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodwill, K.E. et al. Nature Struct. Biol. 4, 578– 585 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Erlandsen, H. et al. Nature Struct. Biol. 4, 995– 1000 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Fusetti, F., Erlandsen, H., Flatmark, T. & Stevens, R.C. J. Biol. Chem. 273, 16962–16967 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Fischer, R.S., Zhao, G. & Jensen, R.A. J. Gen. Microbiol. 137, 1293– 1301 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Holm, L. & Sander, C. Nucleic Acids Res. 22 , 3600–3609 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schuller, D.J., Grant, G.A. & Banaszak, L.J. Nature Struct. Biol. 2, 69– 76 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Gallagher, D.T. et al. Structure 6, 465–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Lipscomb, W.N. Adv. Enzymol. Relat. Areas Mol. Biol. 68, 67– 151 (1994).

    CAS  PubMed  Google Scholar 

  13. Cronk, J.D., Endrizzi, J.A. & Alber, T. Protein Sci. 269, 24657– 24665 (1994).

    Google Scholar 

  14. Lei, X.-D. & Kaufman, S. Proc. Natl. Acad. Sci. USA 95, 1500–1504 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, G., Xia, T., Song, J. & Jensen, R.A. Proc. Natl. Acad. Sci. USA 91, 1366–1370 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson, L.N. & O'Reilly, M. Curr. Opin. Struct. Biol. 6, 762–769 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H. & Goldsmith, E.J. Cell 90, 859–869 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  18. Kobe, B. et al. EMBO J. 15, 6810–6821 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kissinger, C.R. et al. Nature 378, 641–644 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Khan, A.R. & James, M.N.G. Protein Sci. 7, 815–836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  22. CCP4, Acta Crystallogr. D50, 760–763 (1994).

  23. Furey, W. & Swaminathan, S. Methods Enzymol. 277, 590–620 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. La Fortelle, E.de & Bricogne, G. Methods Enzymol. 276, 472–494 ( 1997).

    Article  PubMed  Google Scholar 

  25. Perrakis, A., Sixma, T.K., Wilson, K.S. & Lamzin, V.S. Acta Crystallogr. D53, 448–455 (1997).

    CAS  Google Scholar 

  26. Brünger, A.T., Kuriyan, J. & Karplus, M. Science 235, 458– 460 (1987).

    Article  PubMed  Google Scholar 

  27. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A47, 110–119 ( 1991).

    Article  CAS  Google Scholar 

  28. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

  29. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281– 296 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Rossjohn and A. Oakley for help with synchrotron data collection, F. Katsis for the synthesis of heavy-atom substituted pterins, M. Parker for discussions, A. Perrakis for help with the wARP procedure, J. Hunt for automated density modification and refinement scripts, R. Read and B. Hazes for a version of SIGMAA, J. Varghese, B. Vandonkelaar, M. Lawrence and P. Colman for the xenon soaking device, personnel at the Photon Factory and DESY synchrotrons for help with data collection, and T. Teh for comments on the manuscript. We apologize to those whose work or original publication could not be cited because of space limitations. This work was supported by Australian Research Council (B.K.), W.M. Keck Foundation (R.C.S.) and NHMRC (R.G.H.C, B.E.K.); B.K. is a Wellcome Senior Research Fellow in Medical Science in Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bostjan Kobe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobe, B., Jennings, I., House, C. et al. Structural basis of autoregulation of phenylalanine hydroxylase. Nat Struct Mol Biol 6, 442–448 (1999). https://doi.org/10.1038/8247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing