Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMR identification of hydrophobic cavities with ow water occupancies in protein structures using small gas molecules

Abstract

Magnetization transfer through dipole-dipole interactions (nuclear Overhauser effects, NOEs) between water protons and the protons lining two small hydrophobic cavities in hen egg-white lysozyme demonstrates the presence of water molecules with occupancies of 10–50%. Similarly, NOEs were observed between the cavity protons and the protons of hydrogen, methane, ethylene or cyclopropane applied at 1–200 bar pressure. These gases can thus be used as general NMR indicators of empty or partially hydrated hydrophobic cavities in proteins. All gases reside in the cavities for longer than 1 ns in marked contrast to common belief that gas diffusion in proteins is not much slower than in water. Binding to otherwise empty cavities may be a major aspect of the anesthetic effect of small organic gas molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ernst, J.A., Clubb, R.T., Zhou, H.X., Gronenborn, A.M. & Clore, G.M. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science 267, 1813–1817 (1995).

    Article  CAS  Google Scholar 

  2. Matthews, B.W., Morton, A.G. & Dahlquist, F.W. Use of NMR to detect water within nonpolar protein cavities. Science 270, 1847–1848 (1995).

    Article  CAS  Google Scholar 

  3. Ernst, J.A., Clubb, R.T., Zhou, H.X., Gronenborn, A.M. & Clore, G.M. Use of NMR to detect water within nonpolar protein cavities – response. Science 270, 1848–1849 (1995).

    CAS  Google Scholar 

  4. Zhang, L. & Hermans, J. Hydrophilicity of cavities in proteins. Proteins 24, 433–438 (1996).

    Article  CAS  Google Scholar 

  5. Buckle, A.M., Cramer, P. & Fersht, A.R. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Biochemistry 35, 4298–4305 (1996).

    Article  CAS  Google Scholar 

  6. Schoenborn, B.P., Watson, H.C. & Kendrew, J.C. Binding of xenon to sperm whale myoglobin. Nature 207, 28–30 (1965).

    Article  CAS  Google Scholar 

  7. Schoenborn, B.P. Binding of cyclopropane to sperm whale myoglobin. Nature 214, 1120–1122 (1967).

    Article  CAS  Google Scholar 

  8. Shulman, R.G., Peisach, J. & Wyluda, B.J. Effects of cyclopropane and xenon upon the high-resolution nuclear magnetic resonance spectrum of ferrimyoglobin cyanide. J. Mol. Biol. 48, 517–523 (1970).

    Article  CAS  Google Scholar 

  9. Liepinsh, E. & Otting, G. Organic solvents identify specific ligand binding sites on protein surfaces. Nature Biotech., 5, 264–268 (1997).

    Article  Google Scholar 

  10. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. & Tasumi, M. The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  11. Kodandapani, R. suresh, C.G. & Vijayan, M. Crystal structure of low humidity tetragonal lysozyme at 2.1 Å resolution. Variability in hydration shell and its structural consequences. J. Biol. Chem. 265, 16126–16131 (1990).

    CAS  PubMed  Google Scholar 

  12. Wilson, K.P., Malcolm, B.A. & Matthews, B.W. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J. Biol. Chem. 267, 10842–10849 (1992).

    CAS  PubMed  Google Scholar 

  13. Hodsdon, J.M., Brown, G.M., Sieker, L.C. & Jensen, L.H. Refinement of triclinic lysozyme: I. Fourier and least-squares methods. Acta Crystallogr. B46, 54–62 (1990).

    Article  Google Scholar 

  14. Ramanadham, M., Sieker, L.C. & Jensen, L.H. Refinement of triclinic lysozyme: II. the method of stereochemically restrained least squares. Acta Crystallogr. B46, 63–69 (1990).

    Article  Google Scholar 

  15. Kundrot, C.E. & Richards, F.M. Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres. J. Mol. Biol. 193, 157–170 (1987).

    Article  CAS  Google Scholar 

  16. Young, A.C.M., Dewan, J.C., Nave, C. & Tilton, R.F. Comparison of radiation-induced decay and structure refinement from X-ray data collected from lysozyme crystals at low and ambient temperatures. J. Appl. Crystallogr. 26, 309–319 (1993).

    Article  Google Scholar 

  17. Lescar, J., Souchon, H., Alzari, P.M. Crystal structure of pheasant and guinea fowl egg-white lysozymes. Protein Sci. 3, 788–798 (1994).

    Article  CAS  Google Scholar 

  18. Chitarra, V., Alzari, P.M., Bentley, G.A., Bhat, T.N., Eisele, J.L., Houdusse, A., Lescar, J., Souchon, H. & Poljak, R.J. Three-dimensional structure of a heteroclitic antigen-antibody cross-reaction complex. Proc Natl. Acad. Sci. USA 90, 7711–7715 (1993).

    Article  CAS  Google Scholar 

  19. Shih, P., Holland, D.R. & Kirsch, J.F. Thermal stability determinants of chicken egg-white lysozyme core mutants: hydrophobicity, packing volume, and conserved buried water molecules. Protein Sci. 4, 2050–2062 (1995).

    Article  CAS  Google Scholar 

  20. Wilson, K.P., Malcolm, B.A. & Matthews, B.W. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J. Biol. Chem. 267, 10842–10849 (1992).

    CAS  PubMed  Google Scholar 

  21. Cheetham, J.C., Artymiuk, P.J. & Phillips, D.C. Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 angstroms resolution. J. Mol. Biol. 224, 613–628 (1992).

    Article  CAS  Google Scholar 

  22. Hadfield, A.T., Harvey, D.J., Archer, D.B., MacKenzie, D.A., Jeenes, D.J., Radford, S.E., Lowe, G., Dobson, C.M. & Johnson, L.N. Crystal structure of the mutant D52S hen egg white lysozyme with an oligosaccharide product. J. Mol. Biol. 243, 856–872 (1994).

    Article  CAS  Google Scholar 

  23. Redfield, C. & Dobson, C.M. Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry 27, 122–136 (1988).

    Article  CAS  Google Scholar 

  24. Otting, G., Liepinsh, E. & Wüthrich, K. Proton exchange with internal water molecules in proteins in aqueous solution. J. Am. Chem. Soc. 113, 4363–4364 (1991).

    Article  CAS  Google Scholar 

  25. Ernst, R.R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford; 1987).

  26. Bothner-By, A.A., Stephens, R.L., Lee, J., Warren, C.D. & Jeanloz, R.W. Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 106, 811–813 (1984).

    Article  CAS  Google Scholar 

  27. Otting, G. & Wüthrich, K. Studies of protein hydration in aqueous solution by direct NMR observation of individual protein-bound water molecules. J. Am. Chem. Soc. 111, 1871–1875 (1989).

    Article  CAS  Google Scholar 

  28. Otting, G. & Liepinsh, E. Protein hydration by high-resolution NMR spectroscopy -implications for MR image contrast. Acc. Chem. Res. 28, 171–177 (1995).

    Article  CAS  Google Scholar 

  29. Otting, G., Liepinsh, E. & Wüthrich, K. Protein hydration in aqueous solution. Science 254, 974–980 (1991).

    Article  CAS  Google Scholar 

  30. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570 (1982).

    Article  CAS  Google Scholar 

  31. Fogg, P.G.T. & Gerrard, W. Solubility of Gases in Liquids (Wiley, Chichester; 1991).

  32. Lakowicz, J.R. & Weber, G. Quenching of protein flourescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12, 4171–4179 (1973).

    Article  CAS  Google Scholar 

  33. Calhoun, D.B., Vanderkooi, J.M., Woodrow III, G.V. & Englander, S.W. Penetration of dioxygen into proteins studied by quenching of phosphorescence and flourescence. Biochemistry 22, 526–1532 (1983).

    Google Scholar 

  34. Handbuch der Anorganischen Chemie, 8th edition, Vol. 2, p. 111 (Verlag Chemie, Weinheim; 1926).

  35. Cusanelli, A., Frey, U., Richens, D.T. & Merbach, A.E. The slowest water exchange at a homoleptic mononuclear metal center – variable-temperature and variable-pressure 170 NMR study on [Ir(H2O)6]3+. J. Am. Chem. Soc. 118, 5265–5271 (1996).

    Article  CAS  Google Scholar 

  36. Morton, A., Baase, W.A. & Matthews, B.W. Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme. Biochemistry 34, 8564–8575 (1995).

    Article  CAS  Google Scholar 

  37. Taheri, S., Halsey, M.J., Liu, J. Eger II, E.I., Koblin, D.D. & Laster, M.J. What solvent best represents the site of action of inhaled anesthetics in humans, rats, and dogs? Anesth. Analg. 72, 627–634 (1991).

    Article  CAS  Google Scholar 

  38. Gursky, O., Fontano, E., Bhyravbhatla, B. & Caspar, D.L. Stereospecific dihaloalkane binding in a pH-sensitive cavity in cubic insulin crystals. Proc. Natl. Acad. Sci. USA 91, 12388–12392 (1994).

    Article  CAS  Google Scholar 

  39. Nakagawa, T., Hamanaka, T., Nishimura, S., Uruga, T. & Kito, Y. The specific binding site of the volatile anesthetic diiodomethane to purple membrane by X-ray diffraction. J. Mol. Biol. 238, 297–301 (1994).

    Article  CAS  Google Scholar 

  40. Koblin, D.D., Deady, J.E. & Eger, E.I. Potencies of inhaled anesthetics and alcohol in mice selectively bred for resistance and susceptibility to nitrous oxide anesthesia. Anesthesiology 56, 18–24 (1982).

    Article  CAS  Google Scholar 

  41. Smith, L.J., Sutcliffe, M.J., Redfield, C. & Dobson, C.M. Structure of hen lysozyme in solution. J. Mol. Biol. 229, 930–944 (1993).

    Article  CAS  Google Scholar 

  42. Connolly, M.L. Atomic size packing defects in proteins. Int. J. Peptide Prot. Res. 28, 360–363 (1986).

    Article  CAS  Google Scholar 

  43. Kraulis, P. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  44. Otting, G., Liepinsh, E. Farmer II, B.T. & Wüthrich, K. Protein hydration studied with homonuclearSD 1H NMR experiments. J. Biomol. NMR 1, 209–215 (1991).

    Article  CAS  Google Scholar 

  45. Otting, G. & Liepinsh, E. Selective excitation of the water signal by a Q-switched selective pulse. J. Magn. Reson. B 107, 192–196 (1995).

    Article  CAS  Google Scholar 

  46. Otting, G. & Liepinsh, E. Selective excitation of intense solvent signals in the presence of radiation damping. J. Biomol. NMR 5, 420–426 (1995).

    Article  CAS  Google Scholar 

  47. Geen, H. & Freeman, R. Band-selective radiofrequency pulses. J. Magn. Reson. 93, 93–141 (1991).

    Google Scholar 

  48. Briand, J. & Ernst, R.R. Computer-optimized homonuclear TOCSY experiments with suppression of cross relaxation. Chem. Phys. Lett. 185, 276–285 (1991).

    Article  CAS  Google Scholar 

  49. Halle, B. & Wennerström, H. Interpretation of magnetic resonance data from water nuclei in heterogeneous systems. J. Chem. Phys. 75, 1928–1943 (1981).

    Article  CAS  Google Scholar 

  50. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. I. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  51. Chiu, Y. Irreducible tensor expansion of solid spherical harmonic-type operators in quantum mechanics. J. Math. Phys. 5, 283–288 (1964).

    Article  Google Scholar 

  52. Sack, R.A. Generalization of Laplace's expansion to arbitrary powers and functions of the distance between two points. J. Math. Phys. 5, 245–251 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otting, G., Liepinsh, E., Halle, B. et al. NMR identification of hydrophobic cavities with ow water occupancies in protein structures using small gas molecules. Nat Struct Mol Biol 4, 396–404 (1997). https://doi.org/10.1038/nsb0597-396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0597-396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing