Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA motifs that determine specificity between a viral replicase and its promoter

An Erratum to this article was published on 01 June 2000

Abstract

The 3′ end of brome mosaic virus RNA contains a tRNA-like sequence that directs its RNA synthesis. A stem loop structure in this sequence, stem loop C (SLC), was investigated using NMR, and correlated with its ability to direct RNA synthesis by its replicase. SLC consists of two discrete domains, a flexible stem with an internal loop and a rigid stem containing a 5′-AUA-3′ triloop. Efficient RNA synthesis requires the sequence on only one side of the flexible stem and a specific compact conformation of the triloop. A high resolution structure of the triloop places the 5′ adenine out in solution, and the 3′ adenine within the triloop, held tightly through stacking and unusual hydrogen bonds. This high resolution structure of an RNA promoter from a (+)-strand RNA virus provides new insights into how the RNA-dependent RNA polymerase binds to the RNA to initiate synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structure of the brome mosaic virus RNA (BMV) 3′ end.
Figure 2: D2O NOESY spectrum of SLC1 at 30° C.
Figure 3: The role of the internal loop-stem in directing RNA synthesis.
Figure 4: H2O NOESY spectra of SLC+8 and SLT+8.
Figure 5: The high resolution structure of SL13.
Figure 6: H2O NOESY spectra of SLC+8 and SLT+8.
Figure 7: The role of the triloop in directing RNA synthesis.
Figure 8: Features of SLC are conserved in other bromoviruses.

Similar content being viewed by others

References

  1. Buck, K.W. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv. Virus Res. 47, 159– 251 (1996).

    Article  CAS  Google Scholar 

  2. Hall, T.C., Rao, A.L.N., Pogue, G.P., Huntley, C.C. & Marsh, L. E. Replication, repair, and recombination of brome mosaic virus RNA. In New aspects of positive-strand RNA viruses (eds Brinton, M.A. & Heinz, F.X.) 47–54 (American Society for Microbiology, Washington, DC; 1990).

    Google Scholar 

  3. Ahlquist, P. Bromovirus RNA replication and transcription. Curr. Opin. Genet. Dev. 2, 71–76 ( 1992).

    Article  CAS  Google Scholar 

  4. Ahlquist, P., Dasgupta, R. & Kaesberg, P. Near identity of 3′ RNA secondary structure in bromoviruses and cucumber mosaic virus. Cell 23, 183–189 (1981).

    Article  CAS  Google Scholar 

  5. Miller, W.A., Bujarski, J.J., Dreher, T.W. & Hall, T.C. Minus-strand initiation by brome mosaic virus replicase within the 3′ tRNA-like structure of native and modified RNA templates. J. Mol. Biol. 187, 537–546 ( 1986).

    Article  CAS  Google Scholar 

  6. Deutscher, M.P. In Enzymes of nucleic acid synthesis and modification vol. 2 RNA enzymes (ed. Jacob, S.T.) 159– 183 (CRC Press, Boca Ration; 1984).

    Google Scholar 

  7. Joshi, R.L., Joshi, S., Chapeville, F. & Haenni, A.L. tRNA-like structures of plant viral RNAs: conformational requirements for adenylation and aminoacylation. EMBO J. 2, 1123–1127 (1983).

    Article  CAS  Google Scholar 

  8. Perret, V., Florentz, C., Dreher, T. & Giege, R. Structural analogies between the 3′ tRNA-like structure of brome mosaic virus RNA and yeast tRNATyr revealed by protection studies with yeast tyrosyl-tRNA synthetase. Eur. J. Biochem. 185, 331– 339 (1989).

    Article  CAS  Google Scholar 

  9. Felden, B., Florentz, C., Giege, R. & Westhof, E. Solution structure of the 3′-end of brome mosaic virus genomic RNAs. Conformational mimicry with canonical tRNAs. J. Mol. Biol. 234, 508–531 (1994).

    Article  Google Scholar 

  10. Rietveld, K., Pleij, C.W.A. & Bosch, L. Three-dimensional models of the tRNA-like 3′ termini of some plant viral RNAs. EMBO J. 2, 1079 –1085 (1983).

    Article  CAS  Google Scholar 

  11. Dreher, T.W., Bujarski, J.J. & Hall, T.C. Mutant viral RNAs synthesized in vitro show altered aminoacylation and replicase template activities. Nature 311, 171–175 ( 1984).

    Article  CAS  Google Scholar 

  12. Dreher, T.W. & Hall, T.C. Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity. J. Mol. Biol. 201, 31– 40 (1988).

    Article  CAS  Google Scholar 

  13. Chapman, M.R. & Kao, C.C. A minimal RNA promoter for minus-strand RNA synthesis by the brome mosaic virus polymerase complex. J. Mol. Biol. 286, 709–720 (1999).

    Article  CAS  Google Scholar 

  14. Jaeger, J.A., Turner, D.H. & Zuker, M. Improved predictions of secondary structures for RNA . Proc. Natl. Acad. Sci. USA 86, 7706– 7710 (1989).

    Article  CAS  Google Scholar 

  15. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  Google Scholar 

  16. Wu, M. & Tinoco, I. Jr . RNA folding causes secondary structure rearrangement. Proc. Natl. Acad. Sci. USA 95, 11555–11560 (1998).

    Article  CAS  Google Scholar 

  17. Rao, A.L.N. & Hall, T.C. Recombination and polymerase error facilitate restoration of infectivity in brome mosaic virus. J. Virol. 67, 969–979 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Petersheim, M. & Turner, D.H. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry 22, 256–263 (1983).

    Article  CAS  Google Scholar 

  19. Riesner, D., Maass, G. Thiebe, R., Philippsen, P. & Zachau, H.G. The conformational transitions in yeast tRNAPhe as studied with tRNAPhe fragments. Eur. J. Biochem. 36, 76–88 ( 1973).

    Article  CAS  Google Scholar 

  20. Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T. & Turner, D.H. Improved free-energy parameters for predictions of RNA stability. Proc. Natl. Acad. Sci. USA 83, 9373– 9377 (1986).

    Article  CAS  Google Scholar 

  21. Turner, D.H., Sugimoto, N. & Freier, S.M. RNA structure prediction. Annu. Rev. Biophys. Chem. 17, 167–192 ( 1988).

    Article  CAS  Google Scholar 

  22. Borer, P.N., Dengler, B., Tinoco, I. Jr. & Uhlenbeck, O.C. Stability of ribonucleic acid double-stranded helices. J. Mol. Biol. 86, 843–853 ( 1974).

    Article  CAS  Google Scholar 

  23. Puglisi, J.D., Wyatt, J.R. & Tinoco, I. Jr . Solution conformation of an RNA hairpin loop. Biochemistry 29, 4215– 4226 (1990).

    Article  CAS  Google Scholar 

  24. Davis, P.W., Thurmes, W. & Tinoco, I. Jr . Structure of a small RNA hairpin. Nucleic Acids Res. 21, 537–545 (1993).

    Article  CAS  Google Scholar 

  25. Varani, G. & Tinoco, I. Jr . RNA structure and NMR spectroscopy Q. Rev. Biophys. 24, 479 –532 (1991).

    Article  CAS  Google Scholar 

  26. Saenger, W. Principles of nucleic acid structure. (Springer Verlag, NY; 1984).

    Book  Google Scholar 

  27. Lavery, R. & Sklenar, J. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynam. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  28. Lavery, R. & Sklenar, J. Defining the structure of irregular nucleic acids: conventions and principles. J. Biomol. Struct. Dynam. 6, 655–667 ( 1989).

    Article  CAS  Google Scholar 

  29. Ahlquist, P., Dasgupta, R., and Kaesberg, P. Near identity of 3′ RNA secondary structure in bromoviruses and cucumber mosaic virus. Cell 23, 183–189 (1981).

    Article  CAS  Google Scholar 

  30. Romero, J. Dzianott, A.M., and Bujarski, J.J. The nucleotide sequence and genome organization of the RNA2 and RNA3 segments in broad bean mottle virus. Virology 187, 671–681 ( 1992).

    Article  CAS  Google Scholar 

  31. Siegel, R.W., Adkins, S. & Kao, C.C. Sequence-specific recognition of a subgenomic promoter by a viral RNA polymerase. Proc. Natl. Acad. Sci. USA 94, 11238–11243 (1997).

    Article  CAS  Google Scholar 

  32. Sivakumaran, K., Kim, C.-H., Tayon Jr. R. & Kao, C.C. RNA Sequence and secondary structural determinants in a minimal viral promoter that directs replicase recognition and initiation of genomic plus-strand RNA synthesis. J. Mol. Biol. 294, 667– 682 (1999).

    Article  CAS  Google Scholar 

  33. Hansen. J.L., Long, A.M. & Schultz, S.C. Structure of the RNA-dependent RNA polymerase of poliovirus . Structure 5, 1109–1122 (1997).

    Article  CAS  Google Scholar 

  34. Lesburg, C.A., Cable, M.B., Ferrari, E., Hong, Z., Mannarino, A.F. & Weber, P.C. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nature Struct. Biol. 6, 937–943 (1999).

    Article  CAS  Google Scholar 

  35. Quadt, R. & Jaspars, E.M.J. Purification and characterization of brome mosaic virus RNA-dependent RNA polymerase. Virology 178, 189–194 (1990).

    Article  CAS  Google Scholar 

  36. Batey, R.T., Inada, M., Kujawinski, E., Puglisi, J.D. & Williamson, J.R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 20, 4515–4523 (1992).

    Article  CAS  Google Scholar 

  37. Puglisi, J.D. & Tinoco, I. Jr . Absorbance melting curves of RNA. Methods Enzymol. 180, 304 –325 (1989).

    Article  CAS  Google Scholar 

  38. Plateau, P. & Gueron, M. Exchangeable proton NMR without base-line distortion, using strong-pulse sequences. J. Am. Chem. Soc. 104, 7310–7311 (1982).

    Article  CAS  Google Scholar 

  39. Kay, L.E. Field gradient techniques in NMR spectroscopy. Curr. Opin. Struc. Biol. 5, 674–681 ( 1995).

    Article  CAS  Google Scholar 

  40. Sklénar, V., Miyashiro, H., Zon, G. & Bax, A. Assignment of the 31P and 1H resonances in oligonucleotides by two-dimensional NMR spectroscopy. FEBS Lett., 208, 94– 98 (1986).

    Article  Google Scholar 

  41. Varani, G. & Tinoco, I. Jr. Carbon assignments and heteronuclear coupling constants for an RNA oligonucleotide from natural abundance 13C-1H correlated experiments. J. Am. Chem. Soc. 113, 9349–9354 (1991).

    Article  CAS  Google Scholar 

  42. Marino, J.P., Prestegard, J.H. & Crothers, D.M. Correlation of adenine H2/H8 resonances in uniformly 13C labeled RNAs by 2D HCCH-TOCSY: a new tool for 1H assignment. J. Am. Chem. Soc. 116, 2205–2206 (1994).

    Article  CAS  Google Scholar 

  43. Brünger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR (Yale University Press, New Haven; 1993).

  44. Wimberly, B.T. NMR derived structures of RNA loops: the conformation of eukaryotic 5S ribosomal loop E. (PhD thesis, University of California, Berkeley; 1992).

  45. Varani, G., Aboul-ela, F. & Allain, F.H.-T. NMR investigation of RNA structure. Prog. NMR Spectrosc. 29, 51–127 (1996).

    Article  CAS  Google Scholar 

  46. Sun, J.H., Adkins, S., Faurote, G. & Kao, C.C. Initiation of (−)-strand RNA synthesis catalyzed by the BMV RNA-dependent RNA polymerase: synthesis of oligonucleotides. Virology 226, 1– 12 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Dengler for general lab management and D. Koh for DNA template synthesis. We also thank J. Pelton for NMR advice and H.-J. Park for his work in RNA sample preparation. Funding was provided by a National Institute of Health grant and a Department of Energy grant to I.T., and by a National Science Foundation grant to C.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Tinoco Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CH., Kao, C. & Tinoco, I. RNA motifs that determine specificity between a viral replicase and its promoter. Nat Struct Mol Biol 7, 415–423 (2000). https://doi.org/10.1038/75202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing