Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two exposed amino acid residues confer thermostability on a cold shock protein

Abstract

Thermophilic organisms produce proteins of exceptional stability. To understand protein thermostability at the molecular level we studied a pair of cold shock proteins, one of mesophilic and one of thermophilic origin, by systematic mutagenesis. Although the two proteins differ in sequence at 12 positions, two surface-exposed residues are responsible for the increase in stability of the thermophilic protein (by 15.8 kJ mol−1 at 70 °C). 11.5 kJ mol−1 originate from a predominantly electrostatic contribution of Arg 3 and 5.2 kJ mol−1 from hydrophobic interactions of Leu 66 at the carboxy terminus. The mesophilic protein could be converted to a highly thermostable form by changing the Glu residues at positions 3 and 66 to Arg and Leu, respectively. The variation of surface residues may thus provide a simple and powerful approach for increasing the thermostability of a protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mesophilic cold shock protein Bs-CspB differs from its thermophilic homolog, Bc-Csp, at 12 sequence positions.
Figure 2: Thermal stability curves.
Figure 3: Effect of all individual sequence differences on the stability of Bc-Csp.
Figure 4: The residues that contribute most to the difference in thermal stability between Bs-CspB and Bc-Csp are located near each other at the protein surface.

Similar content being viewed by others

References

  1. Jaenicke, R. & Böhm, G. Curr. Opin. Struct. Biol. 8, 738–748 (1998).

    Article  CAS  Google Scholar 

  2. Makhatadze, G.I. & Privalov, P.L. Adv. Protein Chem. 47, 307–425 ( 1995).

    Article  CAS  Google Scholar 

  3. Graumann, P.L. & Marahiel, M.A. Trends Biochem. Sci. 23, 286–290 (1998).

    Article  CAS  Google Scholar 

  4. Brandi, A., Spurio, R., Gualerzi, C.O. & Pon, C.L. EMBO J. 18, 1653–1659 ( 1999).

    Article  CAS  Google Scholar 

  5. Schindelin, H., Marahiel, M.A. & Heinemann, U. Nature 364, 164– 168 (1993).

    Article  CAS  Google Scholar 

  6. Müller, U., Perl, D., Schmid, F.X. & Heinemann, U. J. Mol. Biol. 297, 975–988 ( 2000).

    Article  Google Scholar 

  7. Perl, D., Welker, C., Schindler, T., Schröder, K., Marahiel, M.A., Jaenicke, R. & Schmid, F.X. Nature Struct. Biol. 5, 229–235 (1998).

    Article  CAS  Google Scholar 

  8. Mayr, L.M., Landt, O., Hahn, U. & Schmid, F.X. J. Mol. Biol. 231, 897–912 ( 1993).

    Article  CAS  Google Scholar 

  9. Grimsley, G.R. et al. Protein Sci. 8, 1843– 1849 (1999).

    Article  CAS  Google Scholar 

  10. Loladze, V.V., Ibarra-Molero, B., Sanchez-Ruiz, J.M. & Makhatadze, G.I. Biochemistry 38, 16419–16423 (1999).

    Article  CAS  Google Scholar 

  11. Spector, S. et al. Biochemistry 39, 872– 879 (2000).

    Article  CAS  Google Scholar 

  12. Karshikoff, A. & Ladenstein, R. Protein Eng. 11, 867–872 ( 1998).

    Article  CAS  Google Scholar 

  13. Lebbink, J.H., Knapp, S., van der Oost, J., Rice, D., Ladenstein, R. & de Vos, W.M. J. Mol. Biol. 280, 287– 296 (1998).

    Article  CAS  Google Scholar 

  14. Lebbink, J.H., Knapp, S., van der Oost, J., Rice, D., Ladenstein, R. & de Vos, W.M. J. Mol. Biol. 289, 357– 369 (1999).

    Article  CAS  Google Scholar 

  15. Knapp, S., Kardinahl, S., Hellgren, N., Tibbelin, G., Schafer, G. & Ladenstein, R. J. Mol. Biol. 285, 689– 702 (1999).

    Article  CAS  Google Scholar 

  16. Macedo-Ribeiro, S., Darimont, B., Sterner, R. & Huber, R. Structure 4, 1291–1301 (1996).

    Article  CAS  Google Scholar 

  17. Kawamura, S., Abe, Y., Ueda, T., Masumoto, K., Imoto, T., Yamasaki, N. & Kimura, M. J. Biol. Chem. 273, 19982– 19987 (1998).

    Article  CAS  Google Scholar 

  18. Haney, P.J., Badger, J.H., Buldak, G.L., Reich, C.I., Woese, C.R. & Olsen, G.J. Proc. Natl. Acad. Sci. USA 96, 3578–3583 (1999).

    Article  CAS  Google Scholar 

  19. Elcock, A.H. J. Mol. Biol. 284, 489–502 (1998).

    Article  CAS  Google Scholar 

  20. Vetriani, C. et al. Proc. Natl. Acad. Sci. USA 95, 12300 –12305 (1998).

    Article  CAS  Google Scholar 

  21. de Bakker, P.I., Hunenberger, P.H. & McCammon, J.A. J. Mol. Biol. 285, 1811– 1830 (1999).

    Article  CAS  Google Scholar 

  22. Hendsch, Z.S. & Tidor, B. Protein Sci. 8, 1381–1392 (1999).

    Article  CAS  Google Scholar 

  23. Xiao, L. & Honig, B. J. Mol. Biol. 289, 1435–1444 (1999).

    Article  CAS  Google Scholar 

  24. Street, A.G. & Mayo, S.L. Structure 7, R105–R109 (1999).

    Article  CAS  Google Scholar 

  25. Desjarlais, J.R. & Handel, T.M. J. Mol. Biol. 290, 305–318 ( 1999).

    Article  CAS  Google Scholar 

  26. Sieber, V., Plückthun, A. & Schmid, F.X. Nature Biotechnol. 16, 955– 960 (1998).

    Article  CAS  Google Scholar 

  27. Arnold, F.A. & Volkov, A.A. Curr. Opin. Chem. Biol. 3, 54–59 (1999).

    Article  CAS  Google Scholar 

  28. Finucane, M.D., Tuna, M., Lees, J.H. & Woolfson, D.N. Biochemistry 38, 11604–11612 ( 1999).

    Article  CAS  Google Scholar 

  29. Willimsky, G., Bang, H., Fischer, G. & Marahiel, M.A. J. Bacteriol. 174, 6326–6335 ( 1992).

    Article  CAS  Google Scholar 

  30. Schindelin, H., Herrler, M., Willimsky, G., Marahiel, M.A. & Heinemann, U. Proteins 14, 120–124 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories and the Marahiel laboratory for help and discussions as well as C. Brooks III (Scripps Research Institute) and C. Nick Pace (Texas A&M University) for a fruitful exchange of ideas about the electrostatic stabilization of proteins. This work was supported by grants from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz X. Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perl, D., Mueller, U., Heinemann, U. et al. Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Mol Biol 7, 380–383 (2000). https://doi.org/10.1038/75151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing