Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of a nitric oxide transport protein from a blood-sucking insect

Abstract

The nitrophorins are heme-based proteins from the salivary glands of the blood-sucking insect Rhodnius prolixus that deliver nitric oxide gas (NO) to the victim while feeding, resulting in vasodilation and inhibition of platelet aggregation. The nitrophorins also bind tightly to histamine, which is released by the host to induce wound healing. Here we present three crystal structures of nitrophorin 1 (NP1): bound to cyanide, which binds in a manner similar to NO (2.3 Å resolution); bound to histamine (2.0 Å resolution); and bound to what appears to be NH3 from the crystallization solution (2.0 Å resolution). The NP1 structures reveal heme to be sandwiched between strands of a lipocalin-like β-barrel, and in an arrangement unlike any other gas-transport protein discovered to date. The heme is six-coordinate with a histidine (His 59) on the proximal side, and ligand in a spacious pocket on the distal side. The structures confirm that NO and histamine compete for the same binding pocket and become buried on binding. The dissociation constant for histamine binding was found to be 19 nM, 100-fold lower than that for NO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ribeiro, J.M.C., Hazzard, J.M.H., Nussenzveig, R.H., Champagne, D.E. & Walker, F.A. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 260, 539–541 (1993).

    Article  CAS  Google Scholar 

  2. Ribeiro, J.M.C. & Walker, F.A. High affinity histamine-binding and antihistaminic activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius prolixus . J. Exp. Med. 180, 2251–2257 (1994).

    Article  CAS  Google Scholar 

  3. Andersen, J.F. et al. Nitric Oxide Binding and Crystallization of Recombinant Nitrophorin I, a Nitric Oxide Transport Protein from the Blood-Sucking Bug Rhodnius prolixus . Biochemistry 36, 4423–4428 (1997).

    Article  CAS  Google Scholar 

  4. Champagne, D.E. The role of salivary vasodilators in bloodfeeding and parasite transmission. parasitology today 10, 430–433 (1994).

    Article  CAS  Google Scholar 

  5. Law, J., Ribeiro, J.M.C. & Wells, M. Biochemical insights derived from diversity in insects. Annu. Rev. Biochem. 61, 87–111 (1992).

    Article  CAS  Google Scholar 

  6. Kirchhoff, L.V. American Trypanosomiasis (Chagas' Disease) - A tropical disease now in the United States. N. Engl. J. Med. 329, 639–644 (1993).

    Article  CAS  Google Scholar 

  7. Ribeiro, J.M.C., Schneider, M. & Guimaraes, J.A. Purification and characterization of prolixin S (nitrophorin 2), the salivary anticoagulant of the blood-sucking bug Rhodnius prolixus . Biochem. J. 308, 243–249 (1995).

    Article  CAS  Google Scholar 

  8. Sun, J. et al. Purification, characterization and cDNA cloning of a novel anticoagulant of the intrinsic pathway (prolixin-S) from salivary glands of the blood sucking bug, Rhodnius prolixus . thrombosis and hemostasis 75, 573–577 (1996).

    Article  CAS  Google Scholar 

  9. Bredt, D.S. & Snyder, S.H. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63, 175–195 (1994).

    Article  CAS  Google Scholar 

  10. Schmidt, H.H. & Walter, U. NO at work. Cell 78, 919–925 (1994).

    Article  CAS  Google Scholar 

  11. Valenzuela, J.G., Walker, F.A. & Ribeiro, J.M.C. A salivary nitrophorin (nitricoxide-carrying hemoprotein) in the bedbug Cimex lectularius . J. Exp. Biol. 198, 1519–1526 (1995).

    CAS  PubMed  Google Scholar 

  12. Jia, L., Bonaventura, C., Bonaventura, J. & Stamler, J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380, 221–226 (1996).

    Article  CAS  Google Scholar 

  13. Addison, A.W. & Stephanos, J.J. Nitrosyliron(III) hemoglobin: autoreduction and spectroscopy. Biochemistry 25, 4104–4113 (1986).

    Article  CAS  Google Scholar 

  14. Sharma, V.S., Traylor, T.G. & Gardiner, R. Reaction of nitric oxide with heme proteins and model compounds of hemoglobin. Biochemistry 26, 3837–3843 (1987).

    Article  CAS  Google Scholar 

  15. Levy, J.H. The Human Inflammatory Response. J. Cardiovasc. Pharmacol. 27 (Suppl. 1), S31–S37 (1996).

    Article  CAS  Google Scholar 

  16. Mannaioni, P.F., Bello, M.G.D. & Masini, E. Platelets and inflammation: Role of platelet-derived growth factor, adhesion molecules and histamine. Inflamm. Res. 46, 4–18 (1997).

    Article  CAS  Google Scholar 

  17. Flower, D.R. The lipocalin protein family: structure and function. Biochem. J. 318, 1–14 (1996).

    Article  CAS  Google Scholar 

  18. Newcomer, M.E. et al. The three-dimensional structure of retinol-binding protein. EMBO J. 3, 1451–1454 (1984).

    Article  CAS  Google Scholar 

  19. Holden, H.M., Rypniewski, W.R., Law, J.H. & Rayment, I. The molecular structure of insecticyanin from the tobacco hornworm Manduca sexta L. at 2.6 Å resolution. EMBO J. 6, 1565–1570 (1987).

    Article  CAS  Google Scholar 

  20. Huber, R. et al. Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 Å resolution. J. Mol. Biol. 198, 499–513 (1987).

    Article  CAS  Google Scholar 

  21. Enemark, J.H. & Feltham, R.D. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 13, 339–406 (1974).

    Article  CAS  Google Scholar 

  22. Scheldt, W.R., Lee, Y.J. & Hatano, K. Preparation and structural characterization of nitrosyl complexes of ferric porphyrinates. molecular structure of aquonitrosyl(meso-tetrapheylporphinato)iron(III) perchlorate and nitrosyl(octaethylporphinato)iron(III) perchlorate. J. Am. Chem. Soc. 106, 3191–3198 (1984).

    Article  Google Scholar 

  23. Scheldt, W.R., Brinegar, A.C., Ferro, E.B. & Kirner, J.F. nitrosylmetalloporphyrins. 4. molecular stereochemistry of two crystalline forms of nitrosyl-α,β,γ,—tetraphenylporphinato(4-methylpiperidine)-iron(II). A structural correlation with v(NO). J. Am. Chem. Soc. 99, 7315–7322 (1977).

    Article  Google Scholar 

  24. Deatherage, J.F. & Moffat, K. Structure of nitric oxide hemoglobin. J. Mol. Biol. 134, 401–417 (1979).

    Article  CAS  Google Scholar 

  25. Bisig, D.A., Dilorio, E.E., Diederichs, K., Winterhalter, K.H. & Piontek, K. Crystal structure of Asian elephant (Elephas maximus) cyano-metmyoglobin at 1.78-Å resolution. J. Biol. Chem. 270, 20754–20762 (1995).

    Article  CAS  Google Scholar 

  26. Mathews, F.S. The orientation of the heme group in crystalline cytochrome b5 . Biochem. Biophys. Acta 622, 375–379 (1980).

    CAS  PubMed  Google Scholar 

  27. Rivera, M. et al. Gene synthesis, bacterial expression, and 1H NMR spectroscopic studies of the rat outer mitochondrial membrane cytochrome b5 . Biochemistry 31, 12233–12240 (1992).

    Article  CAS  Google Scholar 

  28. Walker, F.A., Huynh, B.H., Scheldt, W.R. & Osvath, S.R. Models of the cytochromes b. 6. The effect of axial ligand plane orientation on the EPR and mossbauer spectra of low-spin ferrihemes. J. Am. Chem. Soc. 108, 5288–5297 (1986).

    Article  CAS  Google Scholar 

  29. Ribeiro, J.M.C. The anitserotonin and antihistamine activities of salivary secretion of Rhodnius prolixus . J. Insect. Physiol. 28, 69–75 (1982).

    Article  CAS  Google Scholar 

  30. Champagne, D.E., Nussenzvieg, R.H. & Ribeiro, J.M.C. Purification, partial characterization and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius prolixus . J. Biol. Chem. 270, 8691–8695 (1995).

    Article  CAS  Google Scholar 

  31. Atkinson, T.P., White, M.V. & Kaliner, M.A. . in Inflammation: basic principles and clinical corelates, 2nd Ed. (eds Gallin, J.I., Goldstein, I.M. & Snyderman, R.) 193–209 (Raven Press Ltd, NY, 1992).

    Google Scholar 

  32. Haendler, B. et al. Expression of active recombinant pallidipin, a novel platelet aggregation inhibitor, in the periplasm of Escherichia coli . Biochem. J. 307, 465–470 (1995).

    Article  CAS  Google Scholar 

  33. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and x-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  34. Kabsch, W. Evaluation of single-crystal x-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–934 (1988).

    Article  CAS  Google Scholar 

  35. Colloborative computational project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  36. CCP4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  37. Otwinowski, Z. MLPHARE - Maximum likelihood heavy atom refinement and phase calculation. in isomorphous replacement and anomalous scattering 80 (SERC Daresbury Laboratory, Warrington, England, 1991).

    Google Scholar 

  38. Cowtan, K. ‘dm’: An automated procedure for phase improvement by density modification. CCP4/ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  39. Read, R.J. SIGMAA - Improved fourier coefficients using calculated phases. Acta Crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  40. Jones, A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  41. Pflugrath, J.W., Saper, M.A. & Quiocho, F.A. New generation graphics system for macromolecular modeling. in Methods and Applications in Crystallographic Computing (eds Hall, S. & Ashida, T.) 404–407 (Clarendon Press, Oxford, 1984).

    Google Scholar 

  42. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  43. Brunger, A.T., Kuriyan, J, Karplus, M. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  CAS  Google Scholar 

  44. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. A 47, 392–400 (1991).

    Article  Google Scholar 

  45. Brunger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  CAS  Google Scholar 

  46. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  47. Merritt, E.A. & Murphy, M.E.P. Raster3D Version 2.0 - A program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

  48. Bacon, D.J. & Anderson, W.F. A Fast algorithm for rendering space-filling molecule pictures. J. Mol. Graphics 6, 219–220 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weichsel, A., Andersen, J., Champagne, D. et al. Crystal structures of a nitric oxide transport protein from a blood-sucking insect. Nat Struct Mol Biol 5, 304–309 (1998). https://doi.org/10.1038/nsb0498-304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0498-304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing