Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Pseudocontact shifts used in the restraint of the solution structures of electron transfer complexes

Abstract

The geometry of the ferricytochrome b5-ferricytochrome c complex has been analysed using long-range interprotein paramagnetic dipolar shifts. Heteronuclear filtered NMR spectra of samples containing 15N-labelled cytochrome b5 in complex with unlabelled cytochrome c allowed unambiguous assessment of pseudocontact shifts relative to diamagnetic reference states. Because pseudocontact shifts can be observed for protons as much as 20 Å from the paramagnetic centre, this approach allows study of electron transfer proteins in fast exchange. Our findings provide the first physical evidence confirming hypotheses presented in previous theoretical studies. The absence of certain predicted shifts that are expected based on the best fit to a static model of the complex suggests that cytochrome b5 is more dynamic in solution than in the crystal, in agreement with molecular dynamics simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Mayo, S.L., Ellis, W.R., Jr., Crutchley, R.J. & Gray, H.B. Long-range electron transfer in heme proteins. Science 233, 948–952 (1986).

    Article  CAS  Google Scholar 

  2. Marcus, R.A. Chemical and electrochemical electron-transfer theory. Ann. Rev. Phys. Chem. 15, 155–196 (1964).

    Article  CAS  Google Scholar 

  3. Pellietier, H. & Kraut, J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258, 1748–1755 (1992).

    Article  Google Scholar 

  4. Diesenhofer, J. & Michel, H. The photosynthetic reaction centre from the purple bacterium rhodopseudomonas viridis, Science 245, 1463–1473 (1989).

    Article  Google Scholar 

  5. Friesner, R.A. Comparison of theory and experiment for electron transfers in proteins: where's the beef? Structure 2, 339–343 (1994).

    Article  CAS  Google Scholar 

  6. Mathews, F.S., Levine, M. & Argos, P. Three-dimensional fourier synthesis of calf liver cytochrome b5 at 2.8 Å resolution. J. Mol. Biol. 64, 449–461 (1972).

    Article  CAS  Google Scholar 

  7. Argos, P. & Mathews, F.S. The structure of ferrocytochrome b5 at 2.8 å resolution. J. Biol. Chem. 250, 747–751 (1975).

    CAS  PubMed  Google Scholar 

  8. Dickerson, R.E. et al. Ferrocytochromec: general features of the horse and bonito proteins at 2.8 Å resolution. J. Biol. Chem. 246, 1511–1535 (1971).

    CAS  PubMed  Google Scholar 

  9. Salemme, F.R. An hypothetical structure for an intermolecular electron transfer complex of cytohromes c and b5 . J. Mol. Biol. 102, 563–568 (1976).

    Article  CAS  Google Scholar 

  10. Wendoloski, J.J., Matthew, J.B., Weber, P.C. & Salemme, F.R. Molecular dynamics of a cytochrome c - cytochrome b5 electron transfer complex. Science 238, 794–797 (1987).

    Article  CAS  Google Scholar 

  11. Ng, S., Smith, M.B., Smith, H.T. & Millett, F. Effect of modification of individual cytochromec lysines on the reaction with cytochrome b5 . Biochem. 16, 4975–4978 (1977).

    Article  CAS  Google Scholar 

  12. Mauk, M.R. & Mauk, A.G. Electrostatic analysis of the interactions of cytochrome c with native and dimethyl ester heme substituted cytochrome b5 . Biochem. 25, 7085–7091 (1986).

    Article  CAS  Google Scholar 

  13. Rodgers, K.K., Pochapsky, T.C. & Sligar, S.G. Probing the mechanisms of macromolecular recognition: the cytochrome b5-cytochrome c complex. Science 240, 1657–1659 (1988).

    Article  CAS  Google Scholar 

  14. Rodgers, K.K. & Sligar, S.G. Mapping electrostatic interactions in macromolecular associations. J. Mol. Biol. 221, 1453–1460 (1991).

    Article  CAS  Google Scholar 

  15. Mauk, M.R. & Mauk, A.G. Crosslinking of cytochromec and cytochrome b5 with a water-soluble carbodiimide. Eur. J. Biochem. 186, 473–486 (1989).

    Article  CAS  Google Scholar 

  16. Guiles, R.D., Altman, J., Lipka, J.J., Kuntz, I.D. & Waskell, L.A. Structural studies of cytochrome b5: complete sequence-specific resonance assignments for the trypsin-solubilized microsomai ferrocytochrome b5 obtained from pig and calf. Biochem. 29, 1276–1289 (1990).

    Article  CAS  Google Scholar 

  17. Veitch, N.C., Whitford, D. & Williams, R.J.P. An analysis of pseudocontact shifts and their relationship to structural features of the redox states of cytochrome b5, FEBS Lett. 269, 297–304 (1990).

    Article  CAS  Google Scholar 

  18. Guiles, R.D., Basus, V.J., Kuntz, I.D. & Waskell, L. Sequence-specific 1H and 15N resonance assignments for both equilibrium forms of the soluble heme binding domain of rat ferrocytochrome b5 . Biochemistry 31, 11365–11375 (1992).

    Article  CAS  Google Scholar 

  19. Guiles, R.D. et al. Novel heteronuclear methods of assignment transfer from a diamagnetic to a paramagnetic protein: application to rat cytochrome b5 . Biochem. 32, 8329–8339 (1993).

    Article  CAS  Google Scholar 

  20. Wand, A.J. & Di Stefano, D.L., Feng, Y., Roder, H. & Englander, S.W. 1H resonance assignments of horse ferrocytochrome c. Biochem. 28, 189–194 (1989)

    Article  Google Scholar 

  21. Feng, Y., Roder, H., Englander, S.W., Wand, A.J. & Di Stefano, D.L. Proton resonance assignments of horse ferricytochrome c. Biochem. 28, 195–203 (1989)

    Article  CAS  Google Scholar 

  22. Williams, G., Clayden, N.J., Moore, G.R. & Williams, R.J.P. Comparison of the solution and crystal structures of mitochondrial cytochrome c, analysis of paramagnetic shifts in the nuclear magnetic resonance spectrum of ferricytochrome c. J. Mol. Biol. 183, 447–460.

    Article  CAS  Google Scholar 

  23. Eley, C.G.S. & Moore, G.R. 1H-N.M.R. investigations of the interaction between cytochrome c and cytochrome b5 . Biochem. J. 215, 11–21 (1983).

    Article  CAS  Google Scholar 

  24. Horrocks, W.D., Jr. & Greenberg, E.S. Evaluation of dipolar nuclear magnetic resonance shifts in low-spin hemin systems: ferricytochrome c and metmyoglobin cyanide. Biochim. Biophys. Acta 322, 38–44 (1973)

    Article  CAS  Google Scholar 

  25. Kurland, R.J. & McGarvey, B.R. Isotropic NMR shifts in transition metal complexes: the calculation of the Fermi contact and pseudocontact terms. J. Magn. Reson. 2, 286–301 (1977).

    Google Scholar 

  26. LaMar, G.N. & de Ropp, J.S., NMR methodology for paramagnetic proteins. Biol. Magn. Reson. 12, 1–78 (1993).

    Article  CAS  Google Scholar 

  27. Gochin, M. & Roder, H. Protein structure refinement based on paramagnetic NMR shifts: Application to wild-type and mutant forms of cytochrome c. Protein Science 4, 296–305 (1995).

    Article  CAS  Google Scholar 

  28. Griffey, R.H. & Redfield, A.G. Proton-detected heteronuclear edited and correlated nuclear magnetic resonance and nuclear Overhauser effect in solution. Quart. Rev. Biophys. 19, 51–82 (1987).

    Article  CAS  Google Scholar 

  29. Fesik, S.W., Jay, R.L., Erickson, J.W. & Abad-Zapatero, C. Isotope-edited proton NMR study on the structure of a pepsin/inhibitor Complex. Biochem. 27, 8297–8305 (1988).

    Article  CAS  Google Scholar 

  30. von Bodman, S.B., Schulder, M.A., Jollie, D.R. & Sligar, S.G. Synthesis, bacterial expression, and mutagensis of the gene coding fo mammalian cytochrome b5 . Proc. Natl. Acad. Sci USA 83, 9443–9447 (1986).

    Article  CAS  Google Scholar 

  31. Studier, F.W., Rosenberg, A.H. & Dunn, J.J. Gene expression technology. Methods Enzymol. 185, 113–350 (1990).

    Google Scholar 

  32. Mullis, K.B. & Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

    Article  CAS  Google Scholar 

  33. Feng, Y., Roder, H. & Englander, S.W. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c. Biochemistry 29, 3494–3504 (1990).

    Article  CAS  Google Scholar 

  34. Burch, A.M. et al. NMR characterization of surface interactions in the cytochrome b5-cytochrome c complex. Science 247, 831–833 (1990).

    Article  CAS  Google Scholar 

  35. Lee, K.-B. et al. 1H NMR study of the influence of hydrophobic contacts on protein-prosthetic group recognition in bovine and rat ferricytochrome b5 . Biochemistry 29, 9623–9631 (1990).

    Article  CAS  Google Scholar 

  36. Storch, E.M. & Daggett, V. Molecular dynamics simulation of cytochrome b5: implications for protein-protein recognition. Biochemistry 34, 9682–9683 (1995).

    Article  CAS  Google Scholar 

  37. Emerson, S.D. & LaMar, G.N. NMR determination of the orientation of the magnetic susceptibility tensor in cyanometmyoglobin: a new probe of steric tilt of bound ligand. Biochem. 29, 1556–1566 (1990).

    Article  CAS  Google Scholar 

  38. Harper, L.V., Amann, B.T., Vison, V.K. & Berg, J.M. NMR studies of a cobalt-substituted zinc finger peptide. J. Am. Chem. Soc. 115, 2577–2580 (1993).

    Article  CAS  Google Scholar 

  39. Lee, L. & Sykes, B.D. Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin. Biochem. 22, 4366–4379 (1983).

    Article  CAS  Google Scholar 

  40. Bodenhausen, G. & Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiles, R., Sarma, S., DiGate, R. et al. Pseudocontact shifts used in the restraint of the solution structures of electron transfer complexes. Nat Struct Mol Biol 3, 333–339 (1996). https://doi.org/10.1038/nsb0496-333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0496-333

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing