Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural dynamics in an electron–transfer complex

Abstract

The dynamic behaviour of the complex of horse cytochrome c with cytochrome c peroxidase, an electron–transfer complex, was studied in solution by a hydrogen exchange labelling method together with two–dimensional NMR analysis. Although cytochrome c hydrogens in the expected binding region exhibit slowed exchange, the measured slowing factors are very small, indicating that hydrogen–exchange occurs with little hindrance from within the binding interface. The complex in solution must therefore be highly mobile rather than rigidly defined, as implied by the crystalline complex. This result is in conflict with the concept that biological electron transfer occurs by way of predetermined covalent pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Onuchic, J.N., Beratan, D.N., Winkler, J.R. & Gray, H.B. Pathway analysis of protein electron-transfer reactions. A. Rev. Biophys. biomol. Struct. 21, 349–77 (1992).

    Article  CAS  Google Scholar 

  2. Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S. & Dutton, L.P. Nature of biological electron transfer. Nature 355, 796–802 (1992).

    Article  CAS  Google Scholar 

  3. Baum, R.N. Views on biological long-range electron transport stir debate. Chem. Eng. News 20–23 (Feb. 22, 1992).

  4. Closs, G.L. & Miller, J.R. Intramolecular long-distance electron transfer in organic molecules. Science 240, 440–447 (1988).

    Article  CAS  Google Scholar 

  5. Meade, T.J., Gray, H.B. & Winkler, J.R. Driving force effects on the rate of long range electron transfer in ruthenium-modified cytochrome c. J. Am. chem. Soc. 111, 4353–4356 (1989).

    Article  CAS  Google Scholar 

  6. Perkins, T.A., Hauser, B.T. & Eyler, J.R. & Schanze, K.S. Photoinduced organic donor to metal electron transfer across a rigid space. J. phys. Chem. 94, 8745–8748 (1990).

    Article  CAS  Google Scholar 

  7. Wuttke, D.S. & Gray, H.B. Protein engineering as a tool for understanding electron transfer. Curr. Opin. struct. Biol. 3, 555–563 (1993).

    Article  CAS  Google Scholar 

  8. Takano, T. & Dickerson, R.E. Conformation change of cytochrome cferricytochrome c structure refined at 1.5 A resolution. J. molec. Biol. 153, 79–94 (1981).

    Article  CAS  Google Scholar 

  9. Bushnell, G.W., Louie, G.V. & Brayer, G.D. High-resolution three-dimensional structure of horse heart cytochrome c. J. molec. Biol. 214, 585–95 (1990).

    Article  CAS  Google Scholar 

  10. Finzel, B.C., Poulos, T.L. & Kraut, J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7 Å resolution. J. biol. Chem. 259, 13027–13036 (1984).

    CAS  Google Scholar 

  11. Pelletier, H. & Kraut, J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258, 1748–1755 (1992).

    Article  CAS  Google Scholar 

  12. Poulos, T.L., Sherif, S. & Howard, A.J. Co-crystals of yeast cytochrome c peroxidase and horse heart cytochrome c. J. biol. Chem. 262, 13881–13884 (1987).

    CAS  PubMed  Google Scholar 

  13. Poulos, T.L. & Kraut, J. A hypothetical model of the cytochrome c peroxidase-cytochrome c electron transfer complex. J. biol. Chem. 256, 10322–10330 (1980).

    Google Scholar 

  14. Poulos, T.L. & Finzel, B.C. Heme enzyme structure and function. Pept. Protein Rev. 4, 115–172 (1984).

    CAS  Google Scholar 

  15. Northrup, S.H., Boles, J.O. & Reynolds, J.C.L. Brownian dynamics of cytochrome c and cytochrome c peroxidase association. Science 241, 67–70 (1988).

    Article  CAS  Google Scholar 

  16. Lum, V.R., Brayer, G.D., Louie, G.V., Smith, A. & Mauk, G. Computer modeling of yeast iso-1 cytochrome c-yeast cytochrome c peroxidase complexes in Protein Structure, Folding, and Design 2 (ed. Liss, A.R.) 143–150 (New York, 1987).

    Google Scholar 

  17. Paterson, Y., Englander, S.W. & Roder, H. An antibody binding site on a protein antigen defined by hydrogen exchange and two-dimensinal NMR. Science 249, 755–759 (1990).

    Article  CAS  Google Scholar 

  18. Mayne, M., Paterson, Y., Cerasoli, D. & Englander, S.W. Effect of anitbody binding on protein motions studied by hydrogen exchange labeling and two dimensional NMR. Biochemistry 31, 10678–10685 (1992).

    Article  CAS  Google Scholar 

  19. Kang, C.H., Ferguson-Miller, S. & Margoliash, E. Steady state kinetics and binding of eukaryotic cytochromes c with yeast cytochrome c peroxidase. J. biol. Chem. 252, 919–926 (1978).

    Google Scholar 

  20. Erman, J.E. & Vitello, L.B. The binding of cytochrome c peroxidase and ferricytochrome c. J. biol. Chem. 255, 6224–6227 (1980).

    CAS  PubMed  Google Scholar 

  21. Vitello, L.B. & Erman, J.E. Binding of horse heart cytochrome c to yeast porphyrin cytochrome c peroxidase: a fluorescence quenching study on the ionic strength dependence of the interaction. Arch. Bioch. Biophys. 258, 621–629 (1987).

    Article  CAS  Google Scholar 

  22. Ferguson-Miller, S., Brautigan, D.L. & Margoliash, E. Definition of cytochrome c binding domains by chemical modification. J. biol. Chem. 253, 149–159 (1978).

    CAS  PubMed  Google Scholar 

  23. Kang, C.H., Brautigan, D.L., Osheroff, N. & Margoliash, E. Definition of cytochrome c binding domains by chemical modification reaction of carboxydinitro phenyl cytochrome c and trinitrophenyl cytochromecwith bakers yeast cytochrome c peroxidase. J. biol. Chem. 253, 6502 (1978).

    CAS  PubMed  Google Scholar 

  24. Margoliash, E. & Bosshard, R. Guided by electrostatics, a textbook protein comes of age. Trends biochem. Sci. 8, 316–320 (1983).

    Article  CAS  Google Scholar 

  25. Englander, S.W. & Kallenbach, N.R. Hydrogen exchange and structural dynamics in proteins and nucleic acids. Q. Rev. Biophys. 16, 521–655 (1984).

    Article  Google Scholar 

  26. Rohl, C.A., Scholtz, J.M., York, E.J., Stewart, J.M. & Baldwin, R.L. Kinetics of amide proton exchange in helical peptides ofvarying chain lengths. Interpretation by the Lifson-Roig equation. Biochemistry 31, 1263–1269 (1992).

    Article  CAS  Google Scholar 

  27. Englander, S.W. et al. Hydrogen exchange measurement of the free energy of structural and allosteric change in hemoglobin. Science 256, 1684–87 (1992).

    Article  CAS  Google Scholar 

  28. Wand, A.J., Roder, H. & Englander, S.W. Two dimensional 1H NMR studies of cytochrome c. Hydrogen exchange of the N-terminal helix. Biochemistry 25, 1107–1114 (1986).

    Article  CAS  Google Scholar 

  29. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins Struct. Funct. Genet. 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  30. Buck, M., Radford, S.E., & Dobson, C.M. Amide hydrogen exchange in a highly denatured state: hen egg white lysozyme in urea. J. molec. Biol. (in the press).

  31. Benjamin, D.C., Williams, D.C., Smith-Gill, S.J. & Rule, G.S. Long range changes in a protein antigen due to antigen-antibody interaction. Biochemistry 31, 9539–9545 (1992).

    Article  CAS  Google Scholar 

  32. Werner, M.H. & Wemmer, D.E. Identification of a protein binding surface by differential amide hydrogen exchange measurements: application to Bowman-Birk serine proteases. J. molec. Biol. 225, 873–889 (1992).

    Article  CAS  Google Scholar 

  33. Rodgers, K.K., Pochapsky, T.C. & Sligar, S.G. Probing the mechanisms of macromolecular recognition: the cytochrome b5-cytochrome c complex. Science 240, 165–1659 (1988).

    Article  Google Scholar 

  34. Whitford, D., Gao, Y., Pielak, G.J., Williams, R.J.P., McLendon, G.L & Sherman, F. The role of the internal hydrogen bonding network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5. J. Biochem. 200, 359–367 (1991).

    CAS  Google Scholar 

  35. Philips, D.C. Closing remarks in Biomolecular Stereodynamics, vol II (ed. Sarma, R.H.) 497–498 (Adenine Press, New York).

  36. Davies, D.R., Padlan, E.A. & Sheriff, S. Antibody-antigen complexes. A. Rev. Biochem. 59, 439–473, 1990.

    Article  CAS  Google Scholar 

  37. Yonetani, T. Preparation of cytochrome c peroxidase. Meth. Enzymol. 1, 336 (1967).

    Article  Google Scholar 

  38. Nelson, C.E., Sitzman, E.V., Kang, C.H. & Margoliash, E. Preparation of cytochrome c peroxidase from bakers yeast. Analyt. Biochem. 83, 622 (1977).

    Article  CAS  Google Scholar 

  39. Jeng, M.-F. & Englander, S.W. Stable submolecular folding units in a non-compact form of cytochrome c. J. molec. Biol. 221, 1045–61 (1991).

    Article  CAS  Google Scholar 

  40. Aue, W.P., Bartholdi, E. & Ernst, R.R. Two-dimensional spectroscopy: application to nuclear magnetic resonance. J. chem. Phys. 64, 2229–2246 (1976).

    Article  CAS  Google Scholar 

  41. Nagayama, K., Kumar, A., Wüthrich, K. & Ernst, R.R. Experimental techniques of two-dimensional correlated spectroscopy. J. magn. Reson. 40, 321 (1980).

    CAS  Google Scholar 

  42. Wand, A.J., DiStefano, D.L., Feng, Y., Roder, H. & Englander, S.W. Proton resonance assignments of horse ferrocytochrome c. Biochemistry 28, 186–194 (1989).

    Article  CAS  Google Scholar 

  43. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeng, MF., Englander, S., Pardue, K. et al. Structural dynamics in an electron–transfer complex. Nat Struct Mol Biol 1, 234–238 (1994). https://doi.org/10.1038/nsb0494-234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0494-234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing