Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A universal mode of helix packing in RNA

Abstract

RNA molecules fold into specific three-dimensional shapes to perform structural and catalytic functions. Large RNAs can form compact globular structures, but the chemical basis for close helical packing within these molecules has been unclear. Analysis of transfer, catalysis, in vitro-selected and ribosomal RNAs reveal that helical packing predominantly involves the interaction of single-stranded adenosines with a helix minor groove. Using the Tetrahymena thermophila group I ribozyme, we show here that the near-perfect shape complementarity between the adenine base and the minor groove allows for optimal van der Waals contacts, extensive hydrogen bonding and hydrophobic surface burial, creating a highly energetically favorable interaction. Adenosine is recognized in a chemically similar fashion by a combination of protein and RNA components in the ribonucleoprotein core of the signal recognition particle. These results provide a thermodynamic explanation for the noted abundance of conserved adenosines within the unpaired regions of RNA secondary structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Type I and Type II base triples.
Figure 2: Energetics of Type I and Type II interactions.
Figure 3: Comparison of Type I/II base triples from different RNAs.

Similar content being viewed by others

References

  1. Leontis, N.B. & Westhof, E. Q. Rev. Biophys. 31, 399–455 (1998).

    Article  CAS  Google Scholar 

  2. Cate, J.H. et al. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  3. Westhof, E., Dumas, P. & Moras, D. Acta. Crystallogr. A 44, 112–123 (1988).

    Article  Google Scholar 

  4. Ferre-D'Amare, A.R., Zhou, K. & Doudna, J.A. Nature 395, 567–574 (1998).

    Article  CAS  Google Scholar 

  5. Conn, G.L., Draper, D.E., Lattman, E.E. & Gittis, A.G. Science 284, 1171–1174 (1999).

    Article  CAS  Google Scholar 

  6. Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W. & Ramakrishnan, V. Cell 97, 491–502 (1999).

    Article  CAS  Google Scholar 

  7. Su, L., Chen, L., Egli, M., Berger, J.M. & Rich, A. Nature Struct. Biol. 6, 285–292 (1999).

    Article  CAS  Google Scholar 

  8. Mao, H., White, S.A. & Williamson, J.R. Nature Struct. Biol. 6, 1139–1147 (1999).

    Article  CAS  Google Scholar 

  9. Nix, J., Sussman, D. & Wilson, C. J. Mol. Biol. 296, 1235–1244 (2000).

    Article  CAS  Google Scholar 

  10. Sussman, D., Nix, J.C. & Wilson, C. Nature Struct. Biol. 7, 53–57 (2000).

    Article  CAS  Google Scholar 

  11. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  12. Pley, H.W., Flaherty, K.M. & McKay, D.B. Nature 372, 111–113 (1994).

    Article  CAS  Google Scholar 

  13. Wimberly, B.T. et al. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  14. Schluenzen, F. et al. Cell 102, 615–623 (2000).

    Article  CAS  Google Scholar 

  15. Costa, M. & Michel, F. EMBO J. 14, 1276–1285 (1995).

    Article  CAS  Google Scholar 

  16. Doherty, E.A., Herschlag, D. & Doudna, J.A. Biochemistry 38, 2982–2990 (1999).

    Article  CAS  Google Scholar 

  17. Abramovitz, D.L., Friedman, R.A. & Pyle, A.M. Science 271, 1410–1413 (1996).

    Article  CAS  Google Scholar 

  18. Silverman, S.K. & Cech, T.R. Biochemistry 38, 8691–8702 (1999).

    Article  CAS  Google Scholar 

  19. Xiong, Y. & Sundaralingam, M. RNA 6, 1316–1324 (2000).

    Article  CAS  Google Scholar 

  20. Saenger, W. Principles of nucleic acid structure. (Springer-Verlag, New York; 1984).

    Book  Google Scholar 

  21. Michel, F., Ellington, A.D., Couture, S. & Szostak, J.W. Nature 347, 578–580 (1990).

    Article  CAS  Google Scholar 

  22. Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. & Doudna, J.A. Science 287, 1232–1239 (2000).

    Article  CAS  Google Scholar 

  23. Nissen, P., Ippolito, J.A., Ban, M., Moore, P.B. & Steitz, T.A. Proc. Natl. Acad. Sci. USA in the press (2001).

  24. Michel, F. & Westhof, E. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  25. Yoshizawa, S., Fourmy, D. & Puglisi, J.D. Science 285, 1722–1725 (1999).

    Article  CAS  Google Scholar 

  26. Carter, A.P. et al. Nature 407, 340–348 (2000).

    Article  CAS  Google Scholar 

  27. Gutell, R.R., Weiser, B., Woese, C.R. & Noller, H.F. Prog. Nucleic. Acid Res. Mol. Biol. 32, 155–216 (1985).

    Article  CAS  Google Scholar 

  28. Woese, C.R., Winker, S. & Gutell, R.R. Proc. Natl. Acad. Sci. USA 87, 8467–8471 (1990).

    Article  CAS  Google Scholar 

  29. Massire, C. & Westhof, E. J. Mol. Graph Model 16, 255–257 (1998).

    Article  Google Scholar 

  30. Westhof, E., Dumas, P. & Moras, D. J. Mol. Biol. 184, 119–145 (1985).

    Article  CAS  Google Scholar 

  31. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  32. Maidak, B.L. et al. Nucleic Acids Res. 28, 173–174 (2000).

    Article  CAS  Google Scholar 

  33. Kleywegt, G.J. Acta Crystallogr. D 52, 842–857 (1996).

    Article  CAS  Google Scholar 

  34. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Nissen, J. Ippolito and T. Steitz for helpful discussions. This work was supported by the NIH and the David and Lucile Packard Foundation. E.A.D. was supported in part by NIH training grant. R.T.B was supported by a Jane Coffin Childs postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Doudna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doherty, E., Batey, R., Masquida, B. et al. A universal mode of helix packing in RNA. Nat Struct Mol Biol 8, 339–343 (2001). https://doi.org/10.1038/86221

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing