Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structure of the ferric siderophore binding protein FhuD complexed with gallichrome

Abstract

Siderophore binding proteins play a key role in the uptake of iron in many gram-positive and gram-negative bacteria. FhuD is a soluble periplasmic binding protein that transports ferrichrome and other hydroxamate siderophores. The crystal structure of FhuD from Escherichia coli in complex with the ferrichrome homolog gallichrome has been determined at 1.9 Å resolution, the first structure of a periplasmic binding protein involved in the uptake of siderophores. Gallichrome is held in a shallow pocket lined with aromatic groups; Arg and Tyr side chains interact directly with the hydroxamate moieties of the siderophore. FhuD possesses a novel fold, suggesting that its mechanisms of ligand binding and release are different from other structurally characterized periplasmic ligand binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2|Fo| - |Fcc electron density map at 1.9 Å resolution contoured at 1 σ around gallichrome and several proximal residues found in the binding pocket.
Figure 2: Overall structure of the FhuD–gallichrome complex.
Figure 3: Detailed view of gallichrome binding.
Figure 4: Overall charge of the FhuD–gallichrome complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Weinberg, E.D. Perspect. Biol. Med. 40, 578–583 (1997).

    Article  CAS  Google Scholar 

  2. Braun, V. & Killmann, H. Trends Biol. Sci. 24, 104–109 (1999).

    Article  CAS  Google Scholar 

  3. Neilands, J.B. J. Biol. Chem. 270, 26723–26726 (1995).

    Article  CAS  Google Scholar 

  4. Guerinot, M.-L. Annu. Rev. Microbiol. 48, 743–772 (1994).

    Article  CAS  Google Scholar 

  5. Mietzner, T.A. et al. Curr. Topics Microbiol. Immun. 225, 113–135 (1998).

    CAS  Google Scholar 

  6. Köster, W. Biol. Metals 4, 23–32 (1991).

    Article  Google Scholar 

  7. Pierce, J.R. & Earhart, C.F. J. Bacteriol. 166, 930–936 (1986).

    Article  CAS  Google Scholar 

  8. Ozenberger, B.A., Nahlik, M.S. & McIntosh, M.A. J. Bacteriol. 169, 3638–3646 (1987).

    Article  CAS  Google Scholar 

  9. Shea, C.M. & McIntosh, M.A. Mol. Microbiol. 5, 1415–1428 (1991).

    Article  CAS  Google Scholar 

  10. Staudenmaier, H. et al. J. Bacteriol . 171, 2626–2633 (1989).

    Article  CAS  Google Scholar 

  11. Braun, V., Gunther, K., Hantke, K. & Zimmermann, L. J. Bacteriol. 156, 308–315 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, M.J. & Malouin, F. Acc. Chem. Res. 26, 241–249 (1993).

    Article  CAS  Google Scholar 

  13. Ghosh, A. & Miller, M. J. Bioorg. Med. Chem. 4, 43–48 (1996).

    Article  CAS  Google Scholar 

  14. Ferguson, A.D. et al. Science 282, 2215–2220 (1998).

    Article  CAS  Google Scholar 

  15. Locher, K.P. et al. Cell 95, 771–778 (1998).

    Article  CAS  Google Scholar 

  16. Buchanan, S.K. et al. Nature Struct. Biol. 6, 56–63 (1999).

    Article  CAS  Google Scholar 

  17. Van der Helm, D. et al. Acta Crystallogr. B 37, 323–330 (1981).

    Article  Google Scholar 

  18. Llinás, M. & Neilands, J.B. Biophys. Struct. Mech . 2, 105–117 (1976).

    Article  Google Scholar 

  19. Llinás, M., Wilson, D.M. & Klein, M.P. J. Am. Chem. Soc. 99, 6846–6850 (1977).

    Article  Google Scholar 

  20. Llinás, M. & Wüthrich, K. Biochim. Biophys. Acta. 532, 29–40 (1978).

    Article  Google Scholar 

  21. DeMarco, A. & Llinás, M. Biochemistry 18, 3846–3854 (1979).

    Article  CAS  Google Scholar 

  22. Aramini, J., McIntyre, D.D. & Vogel, H.J. J. Am. Chem. Soc. 116, 11506–11511 (1994).

    Article  CAS  Google Scholar 

  23. Quiocho, F.A. & Ledvina, P.S. Mol. Microbiol. 20, 17–25 (1996).

    Article  CAS  Google Scholar 

  24. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  25. Holm, L. & Sander, C. Science 273, 595–602 (1996).

    Article  CAS  Google Scholar 

  26. Lee, Y.-H. et al. Nature Struct. Biology 6, 628–633 (1999).

    Article  CAS  Google Scholar 

  27. Kim, J. & Rees, D.C. Nature 360, 553–560 (1992).

    Article  CAS  Google Scholar 

  28. Lawrence, M.C. et al. Structure 6, 1553–1561 (1999).

    Article  Google Scholar 

  29. Tam, R. & Saier, M.H. Microbiol. Rev. 57, 320–346 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohrbach, M.R., Braun, V. & Köster, W. J. Bacteriol. 177, 7186–7193 (1995).

    Article  CAS  Google Scholar 

  31. Gerstein, M., Lesk, A.M. & Chothia, C. Biochemistry 33, 6739–6749 (1994).

    Article  CAS  Google Scholar 

  32. Rohrbach, M.R., Paul, S. & Köster, W. Mol. Gen. Genet. 248, 33–42 (1995).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Brünger, A.T. et al. Acta Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  35. Roussel, A. & Cambillau, C. TURBO-FRODO. In Silicon Graphics Geometry Partner Directory, 77–88 (Silicon Graphics, Mountain View, California; 1989).

  36. Evans, S.V. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  37. Nicholls, A., Sharp, K. & Honig, B. GRASP Manual (Columbia University, New York, New York; 1992).

Download references

Acknowledgements

We would like to thank V. Braun (Universität Tübingen, Germany) and W. Köster (Zurich, Switzerland) for providing strains used in this study. We would also like to thank L. Howell and J. Berensden for generously providing access to beam time and L. Flaks at the X8C beamline at BNL for assistance with data collection. This work was supported by operating grants from the Alberta Heritage Foundation for Medical Research (AHFMR) and the University of Calgary to L.W.T. and a grant from the Medical Research Council of Canada to H.J.V. T.E.C. is a holder of an MRC Doctoral Research Award. S.-Y.K. was supported by a Natural Sciences and Engineering Research Council of Canada summer studentship. L.W.T. and H.J.V. hold Medical Scholar and Scientist Awards, respectively, from AHFMR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans J. Vogel or Leslie W. Tari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, T., Ku, SY., Dougan, D. et al. The structure of the ferric siderophore binding protein FhuD complexed with gallichrome. Nat Struct Mol Biol 7, 287–291 (2000). https://doi.org/10.1038/74048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing