Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis

Abstract

The leadzyme is a small RNA motif that catalyzes a site-specific, Pb2+-dependent cleavage reaction. As such, it is an example of a metal-dependent RNA enzyme. Here we describe the X-ray crystallographic structure of the leadzyme, which reveals two independent molecules per asymmetric unit. Both molecules feature an internal loop in which a bulged purine base stack twists away from the helical stem. This kinks the backbone, rendering the phosphodiester bond susceptible to cleavage. The independent molecules have different conformations: one leadzyme copy coordinates Mg2+, whereas the other binds only Ba2+ or Pb2+. In the active site of the latter molecule, a single Ba2+ ion coordinates the 2´-OH nucleophile, and appears to mimic the binding of catalytic lead. These observations allow a bond cleavage reaction to be modeled, which reveals the minimal structural features necessary for catalysis by this small ribozyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of the leadzyme, LZ4 (ref.13), used in the structural work.
Figure 2: Representative electron density and schematic drawings of the structure.
Figure 3: Stereo representation and schematic drawings comparing molecules 1 and 2.
Figure 4: Crystal packing interface of the bulged nucleotides from four internal loops.
Figure 5: Stereo representation and schematic drawings for the working model of the cleavage reaction.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gilbert, W. The RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  2. Cech, T.R. in The RNA world (eds. Gesteland, R.F. & Atkins, J.F.) 239– 269 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1993).

    Google Scholar 

  3. Noller, H.F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256, 1416 –1419 (1992).

    Article  CAS  Google Scholar 

  4. Nitta, I., Kamada, Y., Noda, H., Ueda, T. & Watanabe, K. Reconstitution of peptide bond formation with Escherichia coli 23S ribosomal RNA domains. Science 281, 666–669 (1998).

    Article  CAS  Google Scholar 

  5. Long, D.M. & Uhlenbeck, O.C. Self-cleaving catalytic RNA. FASEB J. 7, 25–30 (1993).

    Article  CAS  Google Scholar 

  6. Pley, H.W., Flaherty, K.M. & McKay, D.B. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74 (1994).

    Article  CAS  Google Scholar 

  7. Scott, W.G., Finch, J.T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002 (1995).

    Article  CAS  Google Scholar 

  8. Scott, W.G., Murray, J.B., Arnold, J., Stoddard, B.L. & Klug, A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274, 2065 –2069 (1996).

    Article  CAS  Google Scholar 

  9. Murray, J.B. et al. The structural basis of hammerhead ribozyme self-cleavage. Cell 92, 665–673 (1998).

    Article  CAS  Google Scholar 

  10. Wedekind, J.E. & McKay, D.B. Crystallographic structures of the hammerhead ribozyme: relationship to ribozyme folding and catalysis. Ann. Rev. Biophys. Biomol. Struct. 27, 475–502 (1998).

    Article  CAS  Google Scholar 

  11. Dirheimer, G. et al. Primary structure of transfer RNA. Biochimie 54, 127–144 (1972).

    Article  CAS  Google Scholar 

  12. Brown, R.S., Hingerty, B.E., Dewan, J.C. & Klug, A. Pb(II)-catalysed cleavage of the sugar–phosphate backbone of yeast tRNAPhe—implications for lead toxicity and self-splicing RNA. Nature 303 , 543–546 (1983).

    Article  CAS  Google Scholar 

  13. Pan, T. & Uhlenbeck, O.C. A small metalloribozyme with a two-step mechanism. Nature 358, 560– 563 (1992).

    Article  CAS  Google Scholar 

  14. Hodel, A., Kim, S.-H. & Brünger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr. A 48, 851–859 (1992).

    Article  Google Scholar 

  15. Adams, P.D., Pannu, N.S., Read, R.J. & Brünger, A.T. Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc. Natl. Acad. Sci. USA 94, 5018– 5023 (1997).

    Article  CAS  Google Scholar 

  16. Sugimoto, N. & Ohmichi, T. Site-specific cleavage reaction catalyzed by leadzyme is enhanced by combined effect of lead and rare earth ions. FEBS Lett. 393, 97– 100 (1996).

    Article  CAS  Google Scholar 

  17. Brown, R.S., Dewan, J.C. & Klug, A. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry 24, 4785–4801 ( 1985).

    Article  CAS  Google Scholar 

  18. Gao, Y.G., Robinson, H., van Boom, J.H. & Wang, A.H. Influence of counter-ions on the crystal structures of DNA decamers: binding of [Co(NH3)6]3+ and Ba2+ to A-DNA. Biophys. J. 69, 559– 568 (1995).

    Article  CAS  Google Scholar 

  19. Gao, Y.G., Sriram, M. & Wang, A.H. Crystallographic studies of metal ion–DNA interactions: different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug–DNA complex. Nucleic Acids Res. 21, 4093–4101 ( 1993).

    Article  CAS  Google Scholar 

  20. Hoogstraten, C.G., Legault, P. & Pardi, A. NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J. Mol. Biol. 284, 337–350 (1998).

    Article  CAS  Google Scholar 

  21. Legault, P., Hoogstraten, C.G., Metlitzky, E. & Pardi, A. Order, dynamics and metal binding in the lead-dependent ribozyme. J. Mol. Biol. 284, 325–335 (1998).

    Article  CAS  Google Scholar 

  22. Pan, T., Dichtl, B. & Uhlenbeck, O.C. Properties of an in vitro selected Pb2+ cleavage motif. Biochemistry 33, 9561–9565 (1994).

    Article  CAS  Google Scholar 

  23. Chartrand, P., Usman, N. & Cedergren, R. Effect of structural modifications on the activity of the leadzyme. Biochemistry 36, 3145– 3150 (1997).

    Article  CAS  Google Scholar 

  24. Legault, P. & Pardi, A. Unusual dynamics and pKa shift at the active site of a lead-dependent ribozyme. J. Am. Chem. Soc. 119, 6621–6628 ( 1995).

    Article  Google Scholar 

  25. Saenger, W. Principles of nucleic acid structure (Springer-Verlag, New York; 1984).

    Book  Google Scholar 

  26. Lemieux, S., Chartrand, P., Cedergren, R. & Major, F. Modeling active RNA structures using the intersection of conformational space: application to the lead-activated ribozyme. RNA 4, 739–749 (1998).

    Article  CAS  Google Scholar 

  27. Wedekind, J.E. & McKay, D.B. Purification, crystallization, and X-ray diffraction analysis of small ribozymes. Methods Enzymol. in the press (1999).

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  29. Terwilliger, T.C. SOLVE: an automated crystallographic structure solution program for MIR and MAD. Edition 1.04 (www.solve.lanl.gov, Los Alamos National Laboratory; 1997).

  30. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  31. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 42, 30–42 (1996).

    Article  Google Scholar 

  32. Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved Methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  34. Pannu, N.S. & Read, R.J. Improved structure refinement through maximum likelihood. Acta Crystallogr. A 52, 659–668 (1996).

    Article  Google Scholar 

  35. Brünger, A.T., Kuriyan, J.M. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  36. Jiang, J.S. & Brünger, A.T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100 –115 (1994).

    Article  CAS  Google Scholar 

  37. Sheriff, S. & Hendrickson, W.A. Description of overall anisotropy in diffraction from macromolecular crystals. Acta Crystallogr. A 43, 118–121 ( 1987).

    Article  Google Scholar 

  38. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140 –149 (1986).

    Article  Google Scholar 

  39. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 133–138 (1997).

    Article  Google Scholar 

  40. Merritt, E.A. & Bacon, D.J. Raster 3D: photorealistic molecular graphics. Methods Enzymol. 277, 505– 524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Kielkopf, J. Puglisi, W. Weis, M. Sousa, and A. Kolatkar for helpful discussions, as well as expert technical advice and support; C. Trinh and the staff of SSRL for assistance with the X-ray data collection; also, we thank A. Pardi and C. Hoogstraten for discussions and sharing their unpublished results on the solution structure of the leadzyme. J.E.W. is a Burroughs Wellcome Fund Fellow of the Life Sciences Research Foundation (LSRF). This work was supported by funds from the LSRF and an NIH grant to D.B.M. Operation of SSRL beamlines 7-1 and 9-1 is supported by the DOE, Office of Basic Energy Sciences. The Biotechnology Program at SSRL is supported by the NIH, National Center for Research Resources Biomedical Technology Program and the DOE, Office of Biological and Environmental Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph E. Wedekind or David B. McKay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedekind, J., McKay, D. Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat Struct Mol Biol 6, 261–268 (1999). https://doi.org/10.1038/6700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing