Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Folding intermediates in cytochrome c

Abstract

Folding of cytochrome c from its low pH guanidine hydrochloride (Gdn-HCl) denatured state revealed a new intermediate, a five-coordinate high spin species with a water molecule coordinated to the heme. Incorporation of this five-coordinated intermediate into the previously reported ligand exchange model can quantitatively account for the observed folding kinetics. In this new model, unfolded cytochrome c is converted to its native structure through an obligatory folding intermediate, the histidine-water coordination state, whereas the five-coordinate state and a bis-histidine state are off-pathway intermediates. When the concentration of Gdn-HCl in the refolding solution was increased, an acceleration of the conversion from the bis-histidine coordinated state to the histidine-water coordinated state was observed, demonstrating that the reaction requires unfolding of the mis-organized polypeptide structure associated with the bis-histidine state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small molecules. Annu. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  2. Chan, H.S. & Dill, K.A. The protein folding problem. Phys. Today February 24–32 (1993).

  3. Dill, K.A. & Chan, H.S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  4. Jones, C.M. et al. Fast events in protein folding initiated by nanosecond laser photolysis. Proc. Nat. Acad. Sci. USA 90, 11860–11864 (1993).

    Article  CAS  Google Scholar 

  5. Phillips, C.M., Mizutani, Y. & Hochstrasser, R.M. Ultrafast thermally induced unfolding of Rnase A. Proc. Nat. Acad. Sci. USA 92, 7292–7296 (1995).

    Article  CAS  Google Scholar 

  6. Nolting, B., Golbik, P. & Fersht, A.R. Submillisecond events in protein folding. Proc. Nat. Acad. Sci. USA 92, 10668–10672 (1995).

    Article  CAS  Google Scholar 

  7. Williams, S. et al. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35, 691–697 (1995).

    Article  Google Scholar 

  8. Ballew, R.M., Sabelko, J. & Gruebele, M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc. Natl. Acad. Sci. USA 93, 5759–5764 (1996).

    Article  CAS  Google Scholar 

  9. Pascher, T., Chesick, J.P., Winkler, J.R. & Gray, H.B. Protein folding triggered by electron transfer. Science 271, 1558–1560 (1996).

    Article  CAS  Google Scholar 

  10. Takahashi, S. et al. Folding of cytochrome c initiated by submillisecond mixing. Nature Struct. Biol. 4, 44–50 (1997).

    Article  CAS  Google Scholar 

  11. Yeh, S.-R., Takahashi, S., Fan, B. & Rousseau, D.L. Ligand exchange during cytochrome c folding. Nature Struct. Biol. 4, 51–56 (1997).

    Article  CAS  Google Scholar 

  12. Chan, C.-K. et al. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc. Natl. Acad. Sci. USA 94, 1779–1784 (1997).

    Article  CAS  Google Scholar 

  13. Evans, P.A. & Radford, S.E. Probing the Structure of Folding Intermediates. Curr. Opin. Struct. Biol. 4, 100–106 (1994).

    Article  CAS  Google Scholar 

  14. Englander, S.W. & Mayne, L. Protein Folding Studies Using Hydrogen Exchange Labeling and Two-Dimensional NMR. Annu. Rev. Biophys. Biomol. Struct. 21, 243–265 (1992).

    Article  CAS  Google Scholar 

  15. and Protein Folding. Curr. Opin. Struct. Biol. 4, 112–116 (1994).

  16. Johnson, W.C., Jr. Structure of Proteins Through Circular Dichroism Spectroscopy. Annu. Rev. Biophys. Biophys. Chem. 17, 145–166 (1988).

    Article  CAS  Google Scholar 

  17. Elove, G.A., Chaffotte, A.F., Roder, H. & Goldgerg, M.E. Early Steps in the Cytochrome c Folding Probed by Time Resolved Circular Dichroism and Fluorescence Spectrscopy. Biochemistry 31, 6876–6883 (1992).

    Article  CAS  Google Scholar 

  18. Elove, G.A., Bhuyan, A.K. & Roder, H. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Biochemistry 33, 6925–6935 (1994).

    Article  CAS  Google Scholar 

  19. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  20. Pierce, M.M. & Nall, B.T. Fast folding of cytochrome c. Prot. Sci. 6, 618–627 (1997).

    Article  CAS  Google Scholar 

  21. Hu, S., Morris, I.K., Singh, J.P., Smith, K.M. & Spiro, T.G. Complete assignment of cytochrome c resonance Raman spectra through enzymatic reconstitution with isotopically labeled hemes. J. Am. Chem. Soc. 115, 12446–12458 (1993).

    Article  CAS  Google Scholar 

  22. Jordan, T., Eads, J.C. & Spiro, T.G. Secondary and tertiary structure of the A-state of cytochrome c from resonance Raman spectroscopy. Prot. Sci. 4, 716–728 (1995).

    Article  CAS  Google Scholar 

  23. Wang, J.-S., Tsai, A.-L., Held, J., Palmer, G. & Van Wart, H.E. Temperature- and pH-dependent changes in the coordination sphere of the heme c group in the model peroxidase -acetyl microperoxidase-8. J. Biol. Chem. 267, 15310–15318 (1992).

    CAS  PubMed  Google Scholar 

  24. Sosnick, T.R., Mayne, L. & Englander, S.W. Molecular collapse: the rate-limiting step in two-state cytochrome c folding. Proteins Struct. Func. Genet. 24, 413–426 (1996).

    Article  CAS  Google Scholar 

  25. Myer, Y.P. & Saturno, A.F. Horse heart ferricytochrome c: conformation and heme configuration of low ionic strength acidic forms. J. Prot. Chem. 9, 379–387 (1990).

    Article  CAS  Google Scholar 

  26. Adams, P.A., Baldwin, D.A. & Marques, H.M. The hemepeptides from cytochrome c: preparation, physical and chemical properties, and their use as model compounds for the hemoproteins. In Cytochrome c A Multidisciplinary Approach (eds Scott, R. A. & Mauk, A. G.) 635–692 (University Science Books, Sausilito; 1996).

    Google Scholar 

  27. Bushnell, G.W., Louie, G.V. & Brayer, G.D. High resolution three dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585–595 (1990).

    Article  CAS  Google Scholar 

  28. Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968).

    Article  Google Scholar 

  29. Eaton, E.A., Munoz, V., Thompson, P.A., Chan, C.-K. & Hofrichter, J. Submillisecond kinetics of protein folding. Curr. Opin. Struct. Biol. 7, 10–14 (1997).

    Article  CAS  Google Scholar 

  30. Roder, H. & Colon, W. Kinetic role of early intermediates in protein folding. Curr. Opin. Struct. Biol. 7, 15–28 (1997).

    Article  CAS  Google Scholar 

  31. Sosnick, T.R., Shtilerman, M.D., Mayne, L. & Englander, S.W. Ultrafast signals in protein folding and the polypeptide contracted state. Proc. Natl. Acad. Sci. USA 94, 8545–8550 (1997).

    Article  CAS  Google Scholar 

  32. Takahashi, S., Ching, Y.-c., Wang, J. & Rousseau, D.L. Microsecond generation of oxygen-bound cytochrome c oxidase by rapid solution mixing. J. Biol. Chem. 270, 8405–8407 (1995).

    Article  CAS  Google Scholar 

  33. Colon, W., Elove, G.A., Wakem, L.P., Sherman, F. & Roder, H. Side chain packing of the N- and C-terminal helices plays a critical role in the kinetics of cytochrome c folding. Biochemistry 35, 5538–5549 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syun-Ru Yeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, SR., Rousseau, D. Folding intermediates in cytochrome c. Nat Struct Mol Biol 5, 222–228 (1998). https://doi.org/10.1038/nsb0398-222

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0398-222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing