Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conformational adaptation of agonists to the human nuclear receptor RARγ

Abstract

The nuclear retinoid receptors RARs and RXRs are transcriptional regulators whose activity is mediated by their ligand-binding domain. The crystal structures of the unliganded human (apo) hRXRa ligand-binding domain and of the all-trans retinoic acid-liganded (holo) hRARγ ligand-binding domain have been described. We report the crystal structures of the hRARγ ligand-binding domain bound to either its other natural ligand 9-cis retinoic acid, or an RARγ-selective synthetic agonist (BMS961). The two bound RA stereoisomers exhibit a striking structural resemblance, as their intrinsic flexibility allows them to fit into a unique ligand-binding pocket. The shape of BMS961 is a combination of those of the natural ligands and an additional RARγ-specific hydrogen bond is responsible for the RARg isotype selectivity. All three agonist molecules fill almost entirely the ligand cavity and lead to an identical holo-ligand-binding domain protein conformation, thus accounting for their similar effect on RAR transactivation. The selectivity of different RAR ligands can now be explained using BMS961 as a template. The present conclusions are not limited to RARγ and can be extended to the other members of the retinoid family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mangelsdorf, D.J. et al. Cell 83, 835–839 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chambon, P. FASEB. J. 10, 940–954 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Gronemeyer, H. & Laudet, V. Protein Profile. 2, 1173–1308 (1995).

    CAS  PubMed  Google Scholar 

  4. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Nature 375, 377–382 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Renaud, J.P. et al. Nature 378, 681–689 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Taneja, R. et al. Proc. Natl. Acad. Sci. USA 93, 6197–6202 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swann, R.T., Smith, D., Tramposch, K.M. & Zusi, F.C. U. S. Patent #5,624,957; 4/29/97 (1997).

    Google Scholar 

  8. Chen, J.Y. et al. Nature 382, 819–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Wurtz, J.M. et al. Nature Struct. Biol. 3, 87–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Dawson, M.I. et al. Cancer Res. 55, 4446–4451 (1995).

    CAS  PubMed  Google Scholar 

  11. Bernard, B.A. et al. Biochem. Biophys. Res. Commun. 186, 977–983 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Charpentier, B. et al. J. Med. Chem. 38, 4993–5006 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Graupner, G. et al. Biochem. Biophys. Res. Commun. 179,1554–1561 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Allenby, G. et al. Proc. Natl. Acad. Sci. USA 90, 30–34 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allegretto, E.A. et al. J. Biol. Chem. 268, 26625–26633 (1993). [Published erratum appears in J. Biol. Chem. 269, 7834; (1994)].

    CAS  PubMed  Google Scholar 

  16. Lehmann, J.M. et al. Science 258, 1994–1946 (1992).

    Article  Google Scholar 

  17. Dawson, M.I. et al. J. Med. Chem. 38, 3368–3383 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Bouillon, R., Okamura, W.H. & Norman, A.W. Endocr. Rev. 16, 200–257 (1995).

    CAS  PubMed  Google Scholar 

  19. Brzozowski, A.M. et al. Nature 389, 753–758 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Rochel, N. et al. Biochem. Biophys. Res. Commun. 230, 293–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Bhat, T.N.J. Appl. Crystallogr. 21, 279–281 (1988).

    Article  Google Scholar 

  22. Brünger, A.T. X-PLOR Version 3.851.Yale University Press (1996).

  23. Brünger, A.T. Nature 355, 472–474 (1992).

    Article  PubMed  Google Scholar 

  24. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M.J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  25. Kabsch, W.J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  26. Collaborative Computational Project, Number 4 The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50, 760–763 (1994).

  27. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A. 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  28. Evans, S.V. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Moras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaholz, B., Renaud, JP., Mitschler, A. et al. Conformational adaptation of agonists to the human nuclear receptor RARγ. Nat Struct Mol Biol 5, 199–202 (1998). https://doi.org/10.1038/nsb0398-199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0398-199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing