Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin

Abstract

The nature of ligand motion within proteins has been investigated by measuring femtosecond time-resolved infrared (IR) spectra of CO photodissociated from the haem of myoglobin. Upon dissociation, the CO rotates approximately 90° and becomes trapped within a ligand docking site located near the binding site. Two trajectories, distinguished spectroscopically and kinetically with time constants of 0.20±0.05 ps and 0.52±0.10 ps, lead to CO located within the docking site with opposite orientations. The protein reorganizes about the ‘docked’ CO with a time constant of 1.6±0.3 ps and quickly establishes an energetic barrier that inhibits the reverse rebinding process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Loyd, C.R., Eyring, E.M. & Ellis, J.W.R. Uptake and release of O2 by myohemerythrin. Evidence for different rate-determining steps and a caveat. J. Am. Chem. Soc. 117, 11993–11994 (1995).

    Article  Google Scholar 

  2. Springer, B.A., Sligar, S.G., Olson, J.S. & Phillips, G.N., Jr. Mechanisms of ligand recognition in myoglobin. Chem. Rev. 94, 699–714 (1994).

    Article  CAS  Google Scholar 

  3. Verma, A., Hirsch, D.J., Glatt, C.E., Ronnett, G.V. & Snyder, S.H. Carbon monoxide: a putatitive neural messenger. Science 259, 381–384 (1993).

    Article  CAS  Google Scholar 

  4. Snyder, S.H. Nitric oxide: first in a new class of neurotransmitters? Science 257, 494–496 (1992).

    Article  CAS  Google Scholar 

  5. Antonini, E. & Brunori, M. Hemoglobin and Myoglobin in Their Reactions With Ligands, (North-Holland Publishing Company, London, 1971).

    Google Scholar 

  6. Collman, J.P., Brauman, J.I., Halbert, T.R. & Suslick, K.S. Nature of O2 and CO binding to metalloporphyrins and heme proteins. Proc. Natl. Acad. Sci. U. S. A. 73, 3333–3337 (1976).

    Article  CAS  Google Scholar 

  7. Swiss-Prot Protein Database. (National Center of Biotechnology Information, Bethesda, 1994).

  8. Lim, M., Jackson, T.A. & Anfinrud, P.A. Binding of CO to myoglobin from a heme pocket docking site to form nearly linear Fe-C-O. Science 269, 962–966 (1995).

    Article  CAS  Google Scholar 

  9. Lim, M., Jackson, T.A. & Anfinrud, P.A. Mid-IR vibrational spectrum of CO after photodissociation from heme: evidence for a ligand docking site in the heme pocket of hemoglobin and myoglobin. J. Chem. Phys. 102, 4355–4366 (1995).

    Article  CAS  Google Scholar 

  10. Rothberg, L., Jedju, T.M. & Austin, R.H. Ligand dynamics in the photodissociation of carboxyhemoglobin by subpicosecond transient infrared spectroscopy. Biophys. J. 57, 369–373 (1990).

    Article  CAS  Google Scholar 

  11. Anfinrud, P.A., Han, C. & Hochstrasser, R.M. Direct observations of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 86, 8387–8391 (1989).

    Article  CAS  Google Scholar 

  12. Eaton, W.A. & Hofrichter, J. Polarized absorption and linear dichroism spectroscopy of hemoglobin. Methods Enzymol. 76, 175–261 (1981).

    Article  CAS  Google Scholar 

  13. Alben, J.O. et al. Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures. Proc. Natl. Acad. Sci. U. S. A. 79, 3744–3748 (1982).

    Article  CAS  Google Scholar 

  14. Schlichting, I., Berendzen, J., Phillips, G.N., Jr. & Sweet, R.M. Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371, 808–812 (1994).

    Article  CAS  Google Scholar 

  15. Teng, T.Y., Srajer, V. & Moffat, K. Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nature Struct. Biol. 1, 701–705 (1994).

    Article  CAS  Google Scholar 

  16. Hartmann, H. et al. X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc. Natl. Acad. Sci. USA 93, 7013–7016 (1996).

    Article  CAS  Google Scholar 

  17. Chance, M.R. et al. Global mapping of structural solutions provided by the extended x-ray absorption fine structure ab initio code FEFF 6.01: Structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex. Biochemistry 35, 9014–9023 (1996).

    Article  CAS  Google Scholar 

  18. Case, D.E. & Karplus, M. Dynamics of ligand binding to heme proteins. J. Mol. Biol. 132, 343–368 (1979).

    Article  CAS  Google Scholar 

  19. Elber, R. & Karplus, M. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. Chem. Soc. 112, 9161–9175 (1990).

    Article  CAS  Google Scholar 

  20. Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I.C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975).

    Article  CAS  Google Scholar 

  21. Altman, P.L. & Dittmer, D.S. Respiration and Circulation. in Biological Handbooks (Federation of American Societies for Experimental Biology, Bethesda, 1971).

    Google Scholar 

  22. Alben, J.O. et al. Isotope effect in molecular tunneling. Phys. Rev. Lett. 44, 1157–1163 (1980).

    Article  CAS  Google Scholar 

  23. Alberding, N. et al. Tunneling in ligand binding to heme proteins. Science 192, 1002–1004 (1976).

    Article  CAS  Google Scholar 

  24. Lim, M., Jackson, T.A. & Anfinrud, P.A. Femtosecond near-IR absorbance study of photoexcited myoglobin: the dynamics of electronic and thermal relaxation. J. Phys. Chem. 100, 12043–12051 (1996).

    Article  CAS  Google Scholar 

  25. Henry, E.R., Eaton, W.A. & Hochstrasser, R.M. Molecular dynamics simulations of cooling in laser-excited heme proteins. Proc. Natl. Acad. Sci. U. S. A. 83, 8982–8986 (1986).

    Article  CAS  Google Scholar 

  26. Tian, W.D., Sage, J.T. & Champion, P.M. Investigations of ligand association and dissociation rates in the “open” and “closed” states of myoglobin. J. Mol. Biol. 233, 155–166 (1993).

    Article  CAS  Google Scholar 

  27. Bourgeois, D. et al. Feasability and realization of single-pulse Laue diffraction on macromolecular crystals at ESRF. J. Synchrotron Radiat. 3, 65–74 (1996).

    Article  CAS  Google Scholar 

  28. Srajer, V. et al. Photolysis of the carbon monoxide complex of myoglobin: Nanosecond time-resolved crystallography. Science 274, 1726–1729 (1996).

    Article  CAS  Google Scholar 

  29. Anfinrud, P.A., Lim, M. & Jackson, T.A. Femtosecond IR spectroscopy: methods and applications to protein dynamics. Proc. SPIE-Int. Soc. Opt. Eng. (Longer Wavelength Lasers and Applications) 2138, 107–115 (1994).

    Article  CAS  Google Scholar 

  30. Moore, J.N., Hansen, P.A. & Hochstrasser, R.M. A new method for picosecond time-resolved infrared spectroscopy: applications to CO photodissociation from iron porphyrins. Chem. Phys. Lett. 138, 110–114 (1987).

    Article  CAS  Google Scholar 

  31. Moore, J.N., Hansen, P.A. & Hochstrasser, R.M. Iron-carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared spectroscopy. Proc. Natal. Acad. Sci. U. S. A. 85, 5062–5066 (1988).

    Article  CAS  Google Scholar 

  32. Hansen, P.A., Moore, J.N. & Hochstrasser, R.M. Determination of the iron-carbonyl bond geometry of carboxyprotoheme in solution using picosecond infrared-optical photoselection. Chem. Phys. 131, 49–62 (1989).

    Article  CAS  Google Scholar 

  33. Locke, B., Lian, T. & Hochstrasser, R.M. Determination of Fe-CO geometry and heme rigidity in carbonmonoxyhemoglobin using femtosecond IR spectroscopy. Chem. Phys. 158, 409–419 (1991).

    Article  CAS  Google Scholar 

  34. Lian, T., Locke, B., Kitagawa, T., Nagai, M. & Hochstrasser, R.M. Determination of Fe-CO geometry in the subunits of carbonmonoxy hemoglobin m boston using femtosecond infrared spectroscopy. Biochemistry 32, 5809–5814 (1993).

    Article  CAS  Google Scholar 

  35. Locke, B., Lian, T. & Hochstrasser, R.M. Erratum of Chemical Physics 158 (1991) 409-419. Chem. Phys. 190, 155 (1995).

    Article  CAS  Google Scholar 

  36. Ormos, P. et al. Orientation of carbon monoxide and structure-function relationship in carbonmonoxymyoglobin. Proc. Natl. Acad. Sci. U. S. A. 85, 8492–8496 (1988).

    Article  CAS  Google Scholar 

  37. Braunstein, D.P. et al. Ligand binding to heme proteins: III. FTIR studies of His-E7 and Val-E11 mutants of carbonmonoxymyoglobin. Biophys. J. 65, 2447–2454 (1993).

    Article  CAS  Google Scholar 

  38. Rothberg, L.J., Roberson, M. & Jedju, T.M. Protein dynamics at physiological temperature. Proc. SPIE-Int. Soc. Opt. Eng. 1599, 309–315 (1991).

    Google Scholar 

  39. Straub, J.E., Karplus, M. Molecular dynamics study of the photodissociation of carbon monxide from myoglobin: ligand dynamics in the first 10ps. Chem. Phys. 158, 221(1991).

    Article  CAS  Google Scholar 

  40. Vitkup, D. Petsko, G.A. & Karplus, M. Dissociated Co in myoglobin: comparison between molecular dynamics and X-ray results. Nat. Struct. Biol. 4, 200–206 (1997).

    Article  Google Scholar 

  41. Ma, J., Huo, S. & Straub, J.E. Molecular dynamics simulations study of the B-states of solvated carbonmonoxymyoglobin, (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, M., Jackson, T. & Anfinrud, P. Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nat Struct Mol Biol 4, 209–214 (1997). https://doi.org/10.1038/nsb0397-209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0397-209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing