Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GrpE accelerates peptide binding and release from the high affinity state of DnaK

Abstract

The Escherichia coli nucleotide exchange factor GrpE accelerates the rate of ADP dissociation from high affinity ADP–DnaK, thus enabling ATP binding and transition to the low affinity state. We show here that GrpE, in the absence of ATP, accelerates the rates of the forward and reverse reaction ADP–DnaK–P ADP–DnaK + P, where P denotes peptide substrate. Specifically, the binding of GrpE to an ADP–DnaK–P (or DnaK–P) complex increases koff and kon by 200-fold and 60-fold, respectively. The results are consistent with a GrpE- induced conformational change in the C-terminal polypeptide binding domain of an ADP–DnaK molecule, which results in a unique low affinity intermediate from which peptide can dissociate. A simulation of peptide dissociation from DnaK as a function of the [ATP] / [ADP] ratio shows that GrpE induced peptide dissociation from ADP–DnaK is important at elevated cellular concentrations of ADP, which typically occur upon stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of GrpE on the kinetics of DnaK–P complex dissociation (T = 25 °C).
Figure 2: Effect of GrpE on the kinetics of DnaK–P complex formation (T = 25 °C).
Figure 3: Effect of GrpE on fNR peptide dissociation from nucleotide free DnaK.
Figure 4: Model for the reaction cycle of DnaK.
Figure 5: Plot of kobs for simulated peptide release from DnaK versus [ATP] / [ADP] ratio.

Similar content being viewed by others

References

  1. Georgopoulos, C. & Welch, W.J. Annu. Rev. Cell Biol. 9, 601–634 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Hendrick, J.P. & Hartl, F.-U. Annu. Rev. Biochem. 62, 349–384 (1993).

    Article  CAS  Google Scholar 

  3. Becker, G. & Craig, E.A. Eur. J. Biochem. 219, 11–23 (1994).

    Article  CAS  Google Scholar 

  4. Bucherberger, A. & Bukau, B. In Guidebook to molecular chaperones and protein-folding catalysts. (ed., Gething, M.-J.) 22–25 (Oxford University Press, Oxford; 1997).

    Google Scholar 

  5. Zylicz, M., Ang, D. & Georgopoulos, C. J. Biol. Chem. 262, 17437–17442 (1987).

    CAS  Google Scholar 

  6. Liberek, K., Skowyra, D., Zylicz, M., Johnson, C. & Georgopoulos, C. J. Biol. Chem. 266, 14491–14496 (1991).

    CAS  Google Scholar 

  7. Jordan, R. & McMacken, R. J. Biol. Chem. 270, 4563–4569 (1995).

    Article  CAS  Google Scholar 

  8. Schönfeld, H.-J., Schmidt, D., Schröder, H. & Bukau, B. J. Biol. Chem. 270, 2183–2189 (1995).

    Article  Google Scholar 

  9. Packschies, L. et al. Biochemistry 36, 3417–3422 (1997).

    Article  CAS  Google Scholar 

  10. Palleros, D.R., Reid, K.L., Shi, L., Welch, W.J. & Fink, A.L. Nature 365, 664–666 (1993).

    Article  CAS  Google Scholar 

  11. Pierpaoli, E.V., Sandmeier, E., Schönfeld, H.-J. & Christen, P. J. Biol. Chem. 273, 6643–6649 (1998).

    Article  CAS  Google Scholar 

  12. Szabo, A. et al. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994).

    Article  CAS  Google Scholar 

  13. Hartl, F.U. Nature 381, 571–580 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F.-U. & Kuriyan, J. Science 276, 431–435 (1997).

    Article  CAS  Google Scholar 

  15. Farr, C.D., Galiano, F.J. & Witt, S.N. Biochemistry 34, 15574–15582 (1995).

    Article  CAS  Google Scholar 

  16. Gragerov, A., Zeng, L., Zhao, X., Burkholder, W. & Gottesman, M.E. J. Mol. Biol. 235, 848–854 (1994).

    Article  CAS  Google Scholar 

  17. Zhu, X. et al. Science 272, 1606–1614 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Pierpaoli, E.V., Gisler, S.M. & Christen, P. Biochemistry 37, 16741–16748 (1998).

    Article  CAS  Google Scholar 

  19. Schmid, D., Baici, A., Gehring, H. & Christen, P. Science 263, 971–973 (1994).

    Article  CAS  Google Scholar 

  20. Takeda, S. & McKay, D.B. Biochemistry 35, 4636–4644 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, B., Wawrzynow, Zylicz, M. & Georgopoulos, C. EMBO J. 15, 4806–4816 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Slepenkov, S.V. & Witt, S.N. Biochemistry 37, 16749–16756 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Mayer, M. et al. Nature Struct. Biol. 7, 586–593 (2000).

    Article  CAS  Google Scholar 

  24. Barshop, B.A., Wrenn, R.F. & Frieden, C. Anal. Biochem. 130, 134–145 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Gisler, S.M., Pierpaoli, E.V. & Christen, P. J. Mol. Biol. 279, 833–840 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Russell, R., Jordan, R. & McMacken, R. Biochemistry 37, 596–607 (1998).

    Article  CAS  Google Scholar 

  27. Slepenkov, S.V. & Witt, S.N. Biochemistry 37, 1015–1024 (1998).

    Article  CAS  Google Scholar 

  28. Neuhard, J. & Nygaard, P. In Eschericha coli and Salmonella typhimurium. Vol. 1 (ed., Neidhardt, F.C.) 447 (American Society for Microbiology, Washington, DC; 1987).

    Google Scholar 

  29. Jensen, P.R., Loman, L., Petra, B., van der Weijden, C. & Westerhoff, H.V. J. Bacteriol. 177, 3420–3426 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Schirmer, E.C., Queitsch, C., Kowal, A.S., Parsell, D.A. & Lindquist, S. J. Biol. Chem. 273, 15546–15552 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a NIH grant to S.N.W. We thank D. Dwyer, M. Sehorn and S. Slepenkov for a critical reading of the manuscript and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan N. Witt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mally, A., Witt, S. GrpE accelerates peptide binding and release from the high affinity state of DnaK. Nat Struct Mol Biol 8, 254–257 (2001). https://doi.org/10.1038/85002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing