Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium

Abstract

We have determined the X-ray crystal structure of the cooperative anthranilate synthase heterotetramer from Salmonella typhimurium at 1.9 Å resolution with the allosteric inhibitor l-tryptophan bound to a regulatory site in the TrpE subunit. Tryptophan binding orders a loop that in turn stabilizes the inactive T state of the enzyme by restricting closure of the active site cleft. Comparison with the structure of the unliganded, noncooperative anthranilate synthase heterotetramer from Sulfolobus solfataricus shows that the two homologs have completely different quarternary structures, even though their functional dimer pairs are structurally similar, consistent with differences in the cooperative behavior of the enzymes. The structural model rationalizes mutational and biochemical studies of the enzyme and establishes the structural differences between cooperative and noncooperative anthranilate synthase homologs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of S. typhimurium anthranilate synthase.
Figure 2: The tryptophan binding site.
Figure 3: Molecular surface of the anthranilate synthase heterotetramer.
Figure 4: Comparison of the S. typhimurium (top) and S. solfataricus (bottom) heterotetramers.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Caligiuri, M.G. & Bauerle, R. J. Biol. Chem. 266, 8328–8335 (1991).

    CAS  PubMed  Google Scholar 

  2. Essar, D.W., Eberly, L., Hadero, A. & Crawford, I.P. J. Bacteriol. 172, 884–900 (1990).

    Article  CAS  Google Scholar 

  3. Graf, R., Mehmann, B. & Braus, G.H. J. Bacteriol. 175, 1061–1068 (1993).

    Article  CAS  Google Scholar 

  4. Tutino, M.L., Scarano, G., Marino, G., Sannia, G. & Cubellis, M.V. J. Bacteriol. 175, 299–302 (1993).

    Article  CAS  Google Scholar 

  5. Knochel, T. et al. Proc. Natl. Acad. Sci. USA 96, 9479–9484 (1999).

    Article  CAS  Google Scholar 

  6. Bauerle, R., Hess, J. & French, S. Methods Enzymol. 142, 366–386 (1987).

    Article  CAS  Google Scholar 

  7. Tolbert, W.D., Chatterji, S., Bauerle, R. & Kretsinger, R.H. Acta Crystallogr. D 55, 305–306 (1999).

    Article  CAS  Google Scholar 

  8. Zalkin, H. & Smith, J.L. Adv. Enzymol. Relat. Areas Mol. Biol. 72, 87–144 (1998).

    CAS  PubMed  Google Scholar 

  9. Raushel, F.M., Thoden, J.B. & Holden, H.M. Biochemistry 38, 7891–7899 (1999).

    Article  CAS  Google Scholar 

  10. Chatterji, S. Ph.D. dissertation, University of Virginia (1995).

    Google Scholar 

  11. Adams, M.W.W., Perler, F.B. & Kelly, R.M. Biotechnology 13, 662–668 (1995).

    CAS  PubMed  Google Scholar 

  12. Welch, G.R. & Easterby, J.S. Trends Biochem. Sci. 19, 193–197 (1994).

    Article  CAS  Google Scholar 

  13. Monod, J., Wyman, J. & Changeux, J.-P. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  14. Koshland, D.L., Nemthy, G. & Filmer, D. Biochemistry 5, 365–385 (1966).

    Article  CAS  Google Scholar 

  15. Doublié, S. Methods Enzymol. 276, 523–530 (1997).

    Article  Google Scholar 

  16. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  17. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. A 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  18. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  19. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  20. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  21. Morollo, A.A. & Bauerle, R. Proc. Natl. Acad. Sci. USA 90, 9983–9987 (1993).

    Article  CAS  Google Scholar 

  22. Morollo, A.A. Ph.D. dissertation, University of Virginia (1995).

    Google Scholar 

  23. Shiratsuchi, A. & Sato, S. J. Biochem. 112, 714–718 (1992).

    Article  CAS  Google Scholar 

  24. Russell, R.B. & Barton, G.J. Proteins 14, 309–323 (1992).

    Article  CAS  Google Scholar 

  25. Frishman, D. & Argos, P. Proteins 23, 566–579 (1995).

    Article  CAS  Google Scholar 

  26. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  27. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  28. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  29. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is based upon research conducted at the Cornell High Energy Synchrotron Light Source and the National Synchrotron Light Source at Brookhaven National Laboratory. We thank B. Sweet and the staff of beamline X12C at the NSLS for advice on MAD data collection and processing. Initial crystals were characterized in the laboratory of D. Ringe and G. Petsko at Brandeis University, and we gratefully acknowledge the resources they provided. A.A.M was supported by a National Research Service Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Eck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morollo, A., Eck, M. Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat Struct Mol Biol 8, 243–247 (2001). https://doi.org/10.1038/84988

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing