Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site–site communication in the EF-hand Ca2+-binding protein calbindin D9k

Abstract

The cooperative binding of Ca2+ ions is an essential functional property of the EF-hand family of Ca2+-binding proteins. To understand how these proteins function, it is essential to characterize intermediate binding states in addition to the apo- and holo-proteins. The three-dimensional solution structure and fast time scale internal motional dynamics of the backbone have been determined for the half-saturated state of the N56A mutant of calbindin D9k with Ca2+ bound only in the N-terminal site. The extent of conformational reorganization and a loss of flexibility in the C-terminal EF-hand upon binding of an ion in the N-terminal EF-hand provide clear evidence of the importance of site–site interactions in this family of proteins, and demonstrates the strength of long-range effects in the cooperative EF-hand Ca2+-binding domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the Ca2+-binding pathways in calbindin D9k.
Figure 2: Plots of a, per residue NOE-derived distance constraints and b, per residue r.m.s.d. from the mean structure for (Ca2+)1-N56A calbindin D9k.
Figure 3: Stereo view of the ensemble of 24 (Ca2+)1-N56A calbindin D9k structures.
Figure 4: Comparison of the packing of Phe 36 against side chains in helix IV in the apo state, (Ca2+)1-N56A, and (Ca2+)2 state of calbindin D9k.
Figure 5: Exchange terms for the two half-saturated states of calbindin D9k.
Figure 6: Comparison of backbone motional dynamics of different binding states of calbindin D9k.

Similar content being viewed by others

References

  1. Forsén, S., Kördel, J., Grundström, T. & Chazin, W.J. The molecular anatomy of a calcium-binding protein. Acc. Chem. Res. 26, 7–14 ( 1993).

    Article  Google Scholar 

  2. Linse, S. et al. Electrostatic contributions to the binding of Ca2+ in calbindin D9k . Biochemistry 30, 154–162 (1991).

    Article  CAS  Google Scholar 

  3. Linse, S., Jonsson, B. & Chazin, W.J. The effect of protein concentration on ion binding . Proc. Natl. Acad. Sci. USA 92, 4748– 4752 (1995).

    Article  CAS  Google Scholar 

  4. Akke, M., Forsén, S. & Chazin, W.J. Molecular basis for co-operativity in Ca2+ binding to calbindin D9k. 1H nuclear magnetic resonance studies of (Cd2+)1-bovine calbindin D 9k . J. Mol. Biol. 220, 173– 189 (1991).

    Article  CAS  Google Scholar 

  5. Akke, M., Forsén, S. & Chazin, W.J. Solution structure of (Cd2+)1-calbindin D9k reveals details of the stepwise structural changes along the Apo → (Ca2+)II 1 → (Ca2+)I,II 2 binding pathway. J. Mol. Biol. 252, 102– 121 (1995).

    Article  CAS  Google Scholar 

  6. Carlström, G. & Chazin, W.J. Two-dimensional 1H nuclear magnetic resonance studies of the half-saturated (Ca2+)1 state of calbindin D9k. Further implications for the molecular basis of cooperative Ca2+ binding. J. Mol. Biol. 231, 415–430 (1993).

  7. Wimberly, B., Thulin, E. & Chazin, W.J. Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant. Protein Sci. 4, 1045–1055 (1995).

    Article  CAS  Google Scholar 

  8. Skelton, N.J., Kördel, J., Akke, M. & Chazin, W.J. Nuclear magnetic resonance studies of the internal dynamics in Apo (Cd2+)1 and (Ca2+)2 calbindin D 9k. The rates of amide proton exchange with solvent. J. Mol. Biol. 227, 1100–1117 ( 1992).

    Article  CAS  Google Scholar 

  9. Akke, M., Skelton, N.J., Kordel, J., Palmer, A.G. III, & Chazin, W.J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry 32, 9832–9844 (1993).

    Article  CAS  Google Scholar 

  10. Akke, M., Brüschweiler, R., Palmer, A.G. III. NMR order parameters and free energy: an analytical approach and its application to cooperative Ca2+ binding by calbindin D9k . J. Am. Chem. Soc. 115, 9832–9833 (1993).

    Article  CAS  Google Scholar 

  11. Spassov, V. & Bashford, D. Electrostatic coupling to pH-titrating sites as a source of cooperativity in protein–ligand binding. Protein Sci. 7, 2012–2025 (1998).

    Article  CAS  Google Scholar 

  12. Linse, S. & Chazin, W.J. Quantitative measurements of the cooperativity in an EF-hand protein with sequential calcium binding. Protein Sci. 4, 1038–1044 (1995).

    Article  CAS  Google Scholar 

  13. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures . J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  14. Kördel, J., Skelton, N.J., Akke, M. & Chazin, W.J. High-resolution structure of calcium-loaded calbindin D9k . J. Mol. Biol. 231, 711–734 ( 1993).

    Article  Google Scholar 

  15. Skelton, N.J., Kördel, J. & Chazin, W.J. Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J. Mol. Biol. 249 , 441–462 (1995).

    Article  CAS  Google Scholar 

  16. Kroenke, C.D., Loria, J.P., Lee, L.K., Rance, M., & Palmer, A.G. III., Longitudinal and transverse 1H-15N dipolar/15N chemical shift anisotropy relaxation interference: unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J. Am. Chem. Soc. 120, 7905–7915 (1998).

    Article  CAS  Google Scholar 

  17. Spyracopoulos, L., Gagne, S.M., Li, M.X. & Sykes, B.D. Dynamics and thermodynamics of the regulatory domain of human cardiac troponin C in the apo- and calcium-saturated states. Biochemistry 37, 18032– 18044 (1998).

    Article  CAS  Google Scholar 

  18. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  19. Clore, G.M. et al. Deviations from simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins . J. Am. Chem. Soc. 112, 4989– 4991 (1990).

    Article  CAS  Google Scholar 

  20. Yang, D. & Kay, L.E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382 (1996).

    Article  CAS  Google Scholar 

  21. Li, Z., Raychaudhuri, S. & Wand, A.J. Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci. 5, 2647–2650 (1996).

    Article  CAS  Google Scholar 

  22. Bracken, C., Carr, P.A., Cavanagh, J., & Palmer, A.G., III . Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J. Mol. Biol. 285, 2133–2146 (1999).

    Article  CAS  Google Scholar 

  23. Gagne, S.M., Tsuda, S., Spyracopoulos, L., Kay, L.E. & Sykes, B.D. Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity. J. Mol. Biol. 278, 667–686 (1998).

    Article  CAS  Google Scholar 

  24. Kay, L.E., Muhandiram, D.R., Wolf, G., Shoelson, S.E. & Forman-Kay, J.D. Correlation between binding and dynamics at SH2 domain interfaces. Nature Struct. Biol. 5, 156–163 (1998).

    Article  CAS  Google Scholar 

  25. Fisher, M.W.F., Majumdar, A. & Zuiderweg, E.R.P. Protein NMR relaxation: theory, applications and outlook. Prog. NMR Spectrosc. 33, 207– 272 (1998).

    Article  Google Scholar 

  26. Cavanagh, J., Palmer, III,A.G., Fairbrother, W. & Skelton, N.J. Protein NMR spectroscopy. Principles and practice. (Academic Press, San Diego, California; 1996).

    Google Scholar 

  27. Skelton, N.J. et al. Practical aspects of two-dimensional proton-detected 15N spin relaxation measurements. J. Magn. Reson. 102, 253–264 (1993).

    Article  CAS  Google Scholar 

  28. Gippert, G. New Computational Methods for 3D NMR Data Analysis and Protein Structure Determination in High-Dimensional Internal Coordinate Space. Ph.D. thesis, The Scripps Research Institute (1995).

    Google Scholar 

  29. Mäler, L., Potts, B.C. & Chazin, W.J. High resolution solution structure of apo calcyclin and structural variations in the S100 family of calcium-binding proteins. J. Biomol. NMR 13, 233–247 (1999).

    Article  Google Scholar 

  30. Güntert, P., Braun, W. & Wüthrich, K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517–530 ( 1991).

    Article  Google Scholar 

  31. Güntert, P. & Wüthrich, K. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J. Biomol. NMR 1, 447–456 ( 1991).

    Article  Google Scholar 

  32. Pearlman, D.A. et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun. 91, 1–41 (1995).

    Article  CAS  Google Scholar 

  33. Smith, J.A., Gomez-Paloma, L., Case, D.A. & Chazin, W.J. Molecular dynamics docking driven by NMR-derived restraints to determine the structure of the calicheamicin gamma(I) oligosaccharide domain complexed to duplex DNA. Magn. Reson. Chem. 34, 147– 155 (1996).

    Article  Google Scholar 

  34. Mandel, A.M., Akke, M., & Palmer, A.G., III. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144– 163 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Institutes of Health to W.J.C. and to M.R., and a postdoctoral fellowship (to L.M.) from the Swedish National Science Research Council. We thank J. Chung for assistance with NMR experiments and A.G. Palmer, III, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Chazin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mäler, L., Blankenship, J., Rance, M. et al. Site–site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat Struct Mol Biol 7, 245–250 (2000). https://doi.org/10.1038/73369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing