Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A gradual disruption of tight side–chain packing: 2D 1H–NMR characterization of acid–induced unfolding of CHABII

Abstract

Little is known about the mechanism of the transition between native proteins and partially folded intermediates. Complete assignments of 2D 1H–NOESY spectra of CHABII at 5 °C, pH 6.3, 5.5, 4.6 and 4.0, reveal that lowering of pH results in an extensive but gradual disappearance of NOEs, implying a gradual disruption of tight side–chain packing. Moreover, a tertiary packing core is identified at 5 °C and pH 4.0, characterized by persistent long–range NOEs. Thus, we suggest that severe disruption of tight side–chain packing of CHABII can occur at a stage where its secondary structure and tertiary topology remain highly native–like.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of CHABII.
Figure 2: a, Far-UV CD spectra of CHABII at 5 °C and and pH 6.3, 5.5, 4.6, 4.0 and 1.5.
Figure 3: NH regions of 2D 1H NOESY spectra of CHABII (600 MHz, mixing time of 150 ms) at 5°C.
Figure 4: a–d, Schematic representation of NOE data used for identification of secondary structure.
Figure 5: Numbers or NOE connectivities per residue for intraresidual NOEs (open bars), sequential NOEs (diagonally hatched bars) medium NOEs (horizontally hatched bars), and long range NOEs (filled bars).

Similar content being viewed by others

References

  1. Levitt, M., Gerstein, M., Huang, E., Subbiah, S. & Tsai, J. Annu. Rev. Biochem. 66, 549– 579 (1997).

    Article  CAS  Google Scholar 

  2. Handel, T.W., Williams, S.A. & De Grado, W.F. Science 261, 879– 885 (1993).

    Article  CAS  Google Scholar 

  3. Betz, S.F., Raleigh, D.P. & DeGrado, W.F. Curr. Opin. Struct. Biol. 3, 601–610 (1993).

    Article  CAS  Google Scholar 

  4. Noggle, J.H. & Schirmer, R.F. The nuclear Overhauser effect: chemical applications (Academic Press, New York; 1971 ).

    Google Scholar 

  5. Wüthrich, K. NMR of proteins and nucleic acids (John Wiley, New York; 1986).

    Book  Google Scholar 

  6. Dyson, H.J. & Wright, P.E. Nature Struct. Biol. 5, 499–503 (1998).

    Article  CAS  Google Scholar 

  7. Dobson, C.M. & Hore, P.J. Nature Struct. Biol. 5, 504–507 (1998).

    Article  CAS  Google Scholar 

  8. Song, J. et al. Biochemistry 36, 3760–3766 (1997).

    Article  CAS  Google Scholar 

  9. Drakopoulou, E. et al. Biochemistry 37, 1292– 1301 (1998).

    Article  CAS  Google Scholar 

  10. Bontems, F., Roumestand, C., Gilquin, B., Menez, A. & Toma, F. Science 245, 1521–1523 (1991).

    Article  Google Scholar 

  11. Bruix, M. et al. Biochemistry 32, 715– 724 (1993).

    Article  CAS  Google Scholar 

  12. Caldwell, J. E. Nature Struct. Biol. 5, 427–431 (1998).

    Article  CAS  Google Scholar 

  13. Menez, A., Bontems, F., Roumestand, C., Gilquin, B. & Toma, F. Proc. R. Soc. Edinburgh 99 B, 83–103 (1992 ).

    CAS  Google Scholar 

  14. Vita, C. Curr. Opin. Biotechnol. 8, 429–434 (1997).

    Article  CAS  Google Scholar 

  15. Vita, C. et al. Biopolymers 47, 93–10 (1998).

    Article  CAS  Google Scholar 

  16. Barrick, D., Hughson, F.M. & Baldwin, R.L. J. Mol. Biol. 237, 588– 601 (1994).

    Article  CAS  Google Scholar 

  17. Redfield, C., Smith, R.A.G. & Dobson, C.M. Nature Struct. Biol. 1, 23– 29 (1994).

    Article  CAS  Google Scholar 

  18. Ferrer, M., Barany, G. & Woodward, C. Nature Struct. Biol. 2, 211– 217 (1995).

    Article  CAS  Google Scholar 

  19. Wishart, D.S., Sykes, B.D. & Richards, F.M. J. Mol. Biol. 222, 311– 333 (1991).

    Article  CAS  Google Scholar 

  20. Ptitsyn, O. B. Adv. Protein Chem. 47, 83–229 (1995).

    Article  CAS  Google Scholar 

  21. Eliezer, D., Jennings, P.A., Dyson, H.J. & Wright, P.E. FEBS Lett. 417, 92–96 ( 1997).

    Article  CAS  Google Scholar 

  22. Gutin, A.M., Abkevich, V.I. & Shakhnovich, E.I. Biochemistry 34, 3066– 3076 (1995).

    Article  CAS  Google Scholar 

  23. Oliveberg, M., Tan. Y.J., Silow, M. & Fersht,, A.R. J. Mol. Biol. 277, 933–943 ( 1998).

    Article  CAS  Google Scholar 

  24. Kim, P.S. & Baldwin, R.L. Annu. Rev. Biochem. 51, 459–489 (1982).

    Article  CAS  Google Scholar 

  25. Matthews, C.R. Annu. Rev. Biochem. 62 653–683 (1993).

    Article  CAS  Google Scholar 

  26. Fersht, A.R. Curr. Opin. Struct. Biol. 7, 3–9 (1997).

    Article  CAS  Google Scholar 

  27. Song, J., Bai, P., Luo, L. & Peng, Z. J. Mol. Biol. 280, 167–174 (1998).

    Article  CAS  Google Scholar 

  28. Baldwin, R.L. Folding & Design 1, R1–8 (1996).

    Article  CAS  Google Scholar 

  29. Kiefhaber, T. Labhardt, A.M. & Baldwin, R.L. Nature 375, 513– 515 (1995).

    Article  CAS  Google Scholar 

  30. Hoeltzli, S.D. & Freiden, C. Proc. Natl. Acad. Sci. USA 92, 9318–9322 ( 1995).

    Article  CAS  Google Scholar 

  31. Miller, C. Neuron, 15, 5–10 ( 1995).

    Article  CAS  Google Scholar 

  32. Dauplais, M. et al. J. Biol. Chem. 272, 4302– 4309 (1997).

    Article  CAS  Google Scholar 

  33. Zinn–Justin, S. et al. Biochemistry 35, 8535– 8543 (1996).

    Article  Google Scholar 

  34. Plaxco, K.W. & Gross, M. Nature 386, 657–659 (1997).

    Article  CAS  Google Scholar 

  35. David, D.G. & Bax, A. J. Am. Chem. Soc. 107, 2820–2821 (1985).

    Article  Google Scholar 

  36. Kumar, A., Ernest, R.R. & Wüthrich, K. Biochem, Biophys. Res. Commun. 95, 1–6 (1980).

    Article  CAS  Google Scholar 

  37. Plateau, P. & Gueron, M. J. Am. Chem. Soc. 104 , 7310 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z.Y. Peng, Department of Biochemistry, University of Connecticut Health Centre, for helpful discussion, and T. Sprules at the Biotechnology Research Institute for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Jamin, N., Gilquin, B. et al. A gradual disruption of tight side–chain packing: 2D 1H–NMR characterization of acid–induced unfolding of CHABII . Nat Struct Mol Biol 6, 129–134 (1999). https://doi.org/10.1038/5815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing