Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues

Abstract

To elucidate the kinetic importance of structural intermediates in single-domain proteins, we measured the effect of solution conditions and amino-acid changes at a central core residue of ubiquitin (Val 26) on the kinetics of folding and unfolding. Kinetic analysis in terms of a sequential three-state mechanism provides insight into the contribution of specific interactions within the ubiquitin core to the structural stability of the native and intermediate states. The observation that disruptive mutations and/or addition of denaturants result in an apparent two-state folding process with slower rates is explained by the destabilization of a partially folded intermediate, which is in rapid equilibrium with unfolded states. The model predicts that under sufficiently stabilizing conditions kinetic intermediates may become populated even for proteins showing apparent two-state kinetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Briggs, M.S. & Roder, H. Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc. Natl. Acad. Sci. USA 89, 2017–2021 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ptitsyn, O.B. Protein folding: hypothesis and experiments. J.Protein Chem. 6, 273–293 (1987).

    Article  CAS  Google Scholar 

  3. Dill, K.A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Scholtz, J.M. & Baldwin, R.L. The mechanism of alpha-helix formation by peptides. Annu. Rev. Biophys. Biomol. Struct. 21, 95–118 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Wright, P.E., Dyson, H.J. & Lerner, R.A. Conformation of peptide fragments of proteins in solution: Implications for initiation of protein folding. Biochemistry 27, 7167 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Neri, D., Billeter, M., Wider, G. & Wthrich, K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science 257,1559–1563 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Shortle, D. Denatured states of proteins and their roles in folding and stability. Curr. Opin. Struct. Biol. 3, 66–74 (1993).

    Article  CAS  Google Scholar 

  8. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Matthews, C.R. Pathways of protein folding. Annu. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Roder, H. & Wüthrich, K. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons. Proteins 1, 34–42 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Udgaonkar, J.B. & Baldwin, R.L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 335, 694–699 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Roder, H., Elöve, G.A. & Englander, S.W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335, 700–704 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roder, H. & Elöve, G.A. in Mechanisms of Protein Folding (ed. Pain, R.H.) 26–55 (Oxford University Press, New York, 1994).

    Google Scholar 

  14. Woodward, C.K. Hydrogen exchange rates and protein folding. Curr. Opin. Struct. Biol. 4, 112–116 (1994).

    Article  CAS  Google Scholar 

  15. Fersht, A.R. Protein folding and stability: the pathway of folding of barnase. FEBS Lett. 325, 516 (1993).

    Article  Google Scholar 

  16. Ptitsyn, O.B. in Protein Folding. (ed. Creighton, T.E.) 243–300 (W. H. Freeman, New York, 1992).

    Google Scholar 

  17. Ptitsyn, O.B., Pain, R.H., Semisotnov, G.V., Zerovnik, E. & Razgulyaev, O.I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Roder, H. Watching protein folding unfold. Nature Struct. Biology 2, 817–820 (1995).

    Article  CAS  Google Scholar 

  19. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Schindler, T., Merrier, M., Marahiel, M.A. & Schmid, F.X. Extremely rapid protein folding in the absence of intermediates. Nature Struct. Biology 2, 663–673 (1995).

    Article  CAS  Google Scholar 

  21. Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biology 1,149–156 (1994).

    Article  CAS  Google Scholar 

  23. Schmid, F.X. in Protein Folding (ed. Creighton, T.E.) 197–241 (W. H. Freeman, New York, 1992).

    Google Scholar 

  24. Odefey, C., Mayr, L.M. & Schmid, F.X. Non-prolyl cis-trans peptide bond isomerization as a rate-determining step in protein unfolding and refolding. J. Mol. Biol. 245, 69–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Elöve, G.A. & Roder, H. Structure and stability of cytochrome c folding intermediates. ACS Symposium Series 470, 50–63 (1991).

    Article  Google Scholar 

  26. Elöve, G.A., Bhuyan, A.K. & Roder, H. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Biochemistry 33, 6925–6935 (1994).

    Article  PubMed  Google Scholar 

  27. Creighton, T.E. Protein folding. Biochem. J. 270, 116 (1990).

    Article  Google Scholar 

  28. Weissman, J.S. & Kim, P.S. Kinetic role of the nonnative intermediates in the folding of BPTI. Proc. Natl. Acad. Sci. USA 89, 9900–9904 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vijay-Kumar, S., Bugg, C.E. & Cook, W.J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194, 531–544 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Khorasanizadeh, S., Peters, I.D., Butt, T.R. & Roder, H. Stability and folding of a tryptophan-containing mutant of ubiquitin. Biochemistry 32, 7054–7063 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Laub, P.B., Khorasanizadeh, S. & Roder, H. Localized solution structure refinement of an F45W variant of ubiquitin using stochastic boundary molecular dynamics and NMR distance restraints. Protein Sci. 4, 973–982 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wintrode, P.L., Makhatadze, G.I. & Privalov, P.L. Thermodynamics of ubiquitin unfolding. Proteins 18, 246–253 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Wilkinson, K.D. & Mayer, A.N. Alcohol-induced conformational changes of ubiquitin. Arch. Biochem. Biophys. 250, 390–399 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Stockman, B.J., Euvrard, A. & Scahill, T.A. Heteronuclear 3-dimensional NMR spectroscopy of a partially denatured protein: The A state of human ubiquitin. J. Biomol. NMR 3, 285–296 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Cox, J.P.L., Evans, P.A., Packman, L.C., Williams, D.H. & Woolfson, D.N. Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. J. Mol. Biol. 234, 483–492 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Hurley, J.H., Baase, W.A. & Mathews, B.W. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J. Mol. Biol. 224, 1143–1159 (1991).

    Article  Google Scholar 

  37. Pace, C.N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Meth. Enzymol. 131, 266–280 (1986).

    Article  CAS  Google Scholar 

  38. Agashe, V.R. & Udgaonkar, J.B. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride. Biochemistry 34, 3286–3299 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Lim, W.A., Farruggio, D.C. & Sauer, R.T. Structural and energetic consequences of disruptive mutations in a protein core. Biochemistry 31, 4324–4333 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Jackson, S.E., Moracci, M., elMasry, N., Johnson, C.M. & Fersht, A.R. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry 32, 11259–11269 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Pace, C.N. Contribution of the hydrophobic effect to globular protein stability. J. Mol. Biol. 226, 29–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Timasheff, S.N. & Arakawa, T. in Protein Structure and Function (ed. Creighton, T.E.) 331–345 (IRL Press, Oxford, 1988).

    Google Scholar 

  43. Tanford, C. Protein denaturation. Part C. Theoretical models for the mechanism of denaturation. Adv. Prot. Chem. 24, 195 (1970).

    Google Scholar 

  44. Chen, B., Baase, W.A. & Schellman, J.A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry 28, 691–699 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Ikai, A. & Tanford, C. Kinetics of unfolding and refolding of proteins I. Mathematical analysis. J. Mol. Biol. 73, 145–163 (1973).

    Article  CAS  PubMed  Google Scholar 

  46. Sali, A., Shaknovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Fersht, A.R., Matouschek, A. & Serrano, L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Kiefhaber, T., Kohler, H. & Schmid, F.X. Kinetic coupling between protein folding and prolyl isomerization. I. Theoretical models. J. Mol. Biol. 224, 217–229 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Kiefhaber, T. Kinetic traps in lysozyme folding. Proc. Natl. Acad. Sci. USA 92, 9029–9033 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Radford, S.E., Dobson, C.M. & Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358, 302–307 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–895 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Matouschek, A., Serrano, L. & Fersht, A.R. The folding of an enzyme: IV. Structure of an intermediate in the refolding of barnase analyzed by a protein engineering procedure. J. Mol. Biol. 224, 819–835 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Matouschek, A., Kellis, J.T., Jr., Serrano, L., Bycroft, M. & Fersht, A.R. Transient folding intermediates characterized by protein engineering. Nature 346, 440–445 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Houry, W.A., Rothwarf, D.M. & Scheraga, H.A. The nature of the initial step in the conformational folding of disulphide-intact ribonuclease A. Nature Struct. Biology 2, 495–503 (1995).

    Article  CAS  Google Scholar 

  55. Serrano, L., Matouschek, A. & Fersht, A.R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J. Mol. Biol. 224, 805–818 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Creighton, T.E. The energetic ups and downs of protein folding. Nature Struct. Biology 1, 135–138 (1994).

    Article  CAS  Google Scholar 

  57. Chen, B.-L., Baase, W.A., Nicholson, H. & Schellman, J.A. Folding kinetics of T4 lysozyme and nine mutants at 12 °C. Biochemistry 31, 1464–1476 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Jones, C.M. et al. Fast events in protein folding initiated by nanosecond laser photolysis. Proc. Natl. Acad. Sci. USA. 90, 11860–11864 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ecker, D.J. et al. Gene synthesis, expression, structures, and functional activities of site-specific mutants of ubiquitin. J. Biol. Chem. 262, 14213–14221 (1987).

    CAS  PubMed  Google Scholar 

  60. Brissette, P., Ballou, D.P. & Massey, V. Determination of the dead time of a stopped-flow fluorometer. Analyt. Biochem. 181, 234–238 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorasanizadeh, S., Peters, I. & Roder, H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Mol Biol 3, 193–205 (1996). https://doi.org/10.1038/nsb0296-193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0296-193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing