Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the neurophysin—oxytocin complex

Abstract

The first crystal structure of the pituitary hormone oxytocin complexed with its carrier protein neurophysin has been determined and refined to 3.0 Å resolution. The hormone-binding site is located at the end of a 310-helix and involves residues from both domains of each monomer. Hormone residues Tyr 2, which is buried deep in the binding pocket, and Cys 1 have been confirmed as the key residues involved in neurophysin-hormone recognition. We have compared the bound oxytocin observed in the neurophysin–oxytocin complex, the X-ray structures of unbound oxytocin analogues and the NMR-derived structure for bound oxytocin. We find that while our structure is in agreement with the previous crystallographic findings, it differs from the NMR result with regard to how Tyr 2 of the hormone is recognized by neurophysin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Insel, T.R. Oxytocin–a neuropeptide for affiliation: evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 17, 3–35 (1992).

    Article  CAS  Google Scholar 

  2. Insel, T.R. & Shaprio, L.E. Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc. Natl. Acad. Sci. USA 89, 5981–5985 (1992).

    Article  CAS  Google Scholar 

  3. Moore, F.L., Wood, R.E. & Boyd, S.K. Sex steroids and vasotocin interact in a female amphibian (Taricha granulosa) to elicit female-like egg laying behavior or male-like courtship. Horm. Behav. 26, 156–166 (1992).

    Article  CAS  Google Scholar 

  4. Barnshad, M., Novak, M.A. & De Vries, G.J. Sex and Species differencesin the vasopressin innervation of sexually naive and parental praire voles Microtus ochrogaster and meadow voles Microtus pennsylvanicus. J. Neuroendocrinol. 5, 247–255 (1993).

    Article  Google Scholar 

  5. Winslow, J.T. et al. A role of central vasopressin in pair bonding in monogameous prairie voles. Nature 365, 545–548 (1993).

    Article  CAS  Google Scholar 

  6. Wang, Z., Ferris, C.F. & De Vries, G.J. The role of septal vasopressin innervation in parental behavoir in prarie voles (Microtus ochrogaster). Proc. Natl. Acad. Sci. USA 91, 400–404 (1994).

    Article  CAS  Google Scholar 

  7. Dreifuss, J.J. A review of neurosecreatory granules: their contents and mechanism of release. Annu. New York Acad. Sci. 248, 184–201 (1975).

    Article  CAS  Google Scholar 

  8. Land, H. et al. Deduced amino acid sequence from the bovine oxytodn-neurophysin I precursor cDNA. Nature 302, 342–344 (1983).

    Article  CAS  Google Scholar 

  9. Land, H. et al. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295, 299–303 (1982).

    Article  CAS  Google Scholar 

  10. Ivell, R. & Richter, D. Structure and comparison of the oxytocin and vasopressin genes from rat. Proc. Natl. Acad. Sci. USA 81, 2006–2010 (1984).

    Article  CAS  Google Scholar 

  11. Chauvet, M.T. et al. A multigene family for the vasopressin-like hormones? Identification of mesotocin, lysipressin and phenypressin in Australian macropods. Biochem. Biophys. Res. Commun. 116, 258–263 (1983).

    Article  CAS  Google Scholar 

  12. Breslow, E. & Walter, R. Binding properties of bovine neurophysins I and II: an equilibrium dialysis study. Molecular Pharmacology 8, 5–81 (1972).

    Google Scholar 

  13. Breslow, E. Chemistry and biology of the neurophysins. Annu. Rev. Biochem. 48, 251–274 (1978).

    Article  Google Scholar 

  14. Menendez-Botet, C. & Breslow, E. Chemical and physical properties of the disulfides of bovine neurophysin-II. Biochemistry 14, 3825–3835 (1975).

    Article  CAS  Google Scholar 

  15. Chaiken, I.M., Randolph, R.E. & Taylor, H.C. Conformational effects associated with the interaction of polypeptide ligands with neurophysins. Annu. New York Acad. Sci. 248, 442–450 (1975).

    Article  CAS  Google Scholar 

  16. Kanmera, T. and Chaiken, I.M. Molecular properties of the oxytocin/bovine neurophysin biosynthetic precursor. Studies using a semisynthetic precursor. J. Biol. Chem. 260, 8474–8482 (1985).

    CAS  PubMed  Google Scholar 

  17. Ando, S., McPhie, P. & Chaiken, I.M. Sequence redesign and the assembly mechanism of the oxytocin/bovine neurophysin I biosynthetic precursor. J. Biol. Chem. 262, 12962–12969 (1987).

    CAS  PubMed  Google Scholar 

  18. Huang, H.B. & Breslow, E. Identification of the unstable neurophysin disulfide and localization to the hormone-binding site. Relationship to folding-unfolding pathways. J. Biol. Chem. 267, 6750–6756 (1992).

    CAS  PubMed  Google Scholar 

  19. Rholam, M., Nicolas, P. & Cohen, P. Binding of neurohypophyseal peptides to neurophysin dimer promotes formation of compact and spherical complexes. Biochemistry 21, 4968–4973 (1982).

    Article  CAS  Google Scholar 

  20. Breslow, E. & Burman, S. Molecular, thermodynamic, and biological aspects of recognition and function in neurophysin-hormone systems: a model system for the analysis of protein-peptide interactions. Adv. Enzymol. 63, 1–67 (1990).

    CAS  PubMed  Google Scholar 

  21. Chen, L.Q. et al. Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 Å determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc. Natl. Acad. Sci. USA 88, 240–4204 (1991).

    Google Scholar 

  22. Husain, J. et al. The conformation of deamino oxytocin: X-ray analysis of the ‘dry’ and ‘wet’ forms. Phil. Trans. R. Soc. London B327, 625–654 (1990).

    Article  Google Scholar 

  23. Woods, S.P. et al. Crystal structure analysis of deamino-oxytocin: Conformational flexability and receptor binding. Science 232, 633–636 (1986).

    Article  Google Scholar 

  24. Lippens, G. et al. Transfer Nuclear Overhauser Effect study of the conformation of oxytocin bound to bovine neurophysin I. Biochemistry 32, 9423–9434 (1993).

    Article  CAS  Google Scholar 

  25. Capra, J.D. et al. Evolution of neurophysin proteins: The partial sequence of bovine neurophysin-I. Proc. natl. Acad. Sci. USA 69, 431–434 (1972).

    Article  CAS  Google Scholar 

  26. Burman, S. et al. Complete assignment of neurophysin disulfides indicates pairing in two separate domains. Proc. Natl. Acad. Sci. USA 86, 429–33 (1989).

    Article  CAS  Google Scholar 

  27. Breslow, E. The cupric ion complexes of oxytocin and 2-phenylalanine oxytocin. Biochim. Biophys. Acta 53, 606–609 (1961).

    Article  CAS  Google Scholar 

  28. Camier, M. et al. Hormonal interactions at the molecular level; a study of oxytocin and vasopressin binding to bovine neurophysins. Eur. J. Biochem. 32, 207–214 (1973).

    Article  CAS  Google Scholar 

  29. Blumenstein, M. & Hruby, V.J. Interactions of oxytocin with bovine neurophysins I and II. Use of 13C nuclear magnetic resonance and hormones specifically enriched with 13C in the Glycinamide-9 and half-cystine-1 positions. Biochemistry 16, 5169–5177 (1977).

    Article  CAS  Google Scholar 

  30. Stouffer, J.E., Hope, D.B. & du Vigneaud, V. in Perspectives in Biology (eds Cori, C.F. et al.) 75–80 (Elsevier, Amsterdam; 1963).

    Google Scholar 

  31. Ferrier, B.M., Jarvis, D. & du Vigneaud, V. Deamino oxytocin: its isolation by partition chromatography, Sephadexand crystallization from water and its biological activity. J. Biol. Chem. 240, 4264–4266 (1965).

    CAS  PubMed  Google Scholar 

  32. Hallenga, K. et al. in Proceedings 10th American Peptide Symposium, May 1987. (ed. G.R. Marshall) 39–45 (1988).

    Google Scholar 

  33. Live, D.H., Cowburn, D. & Breslow, E. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by 15N NMR using magnetization transfer and indirect detection via protons. Biochemistry 26, 6415–6422 (1987).

    Article  CAS  Google Scholar 

  34. Balaram, P., Bothner-By, A.A. & Dadok, J. Negative Nuclear Overhouser Effects as probes of macromolecular structure. J. Am. Chem. Soc. 94, 4015–4017 (1972).

    Article  CAS  Google Scholar 

  35. Balaram, P., Bothner-By, A.A. and Dadok, J. Localization of tyrosine at the binding site of neurophysin-II by negative Nuclear Overhauser Effects. J. Am. Chem. Soc. 94, 4017–4018 (1972).

    Article  CAS  Google Scholar 

  36. Nicolas, P. et al. Bovine neurophysin dimerization and neurohypophyseal hormone binding. Biochemistry 19, 3565–3573 (1980).

    Article  CAS  Google Scholar 

  37. Sur, S.S. et al. Fluorescence studies of native and modified neurophysins. Effects of peptides and pH. Biochemistry 18, 1026–1036 (1979).

    Article  CAS  Google Scholar 

  38. Rose, J.P. et al. Crystallographic analysis of the neurophysin-oxytocin complex. A preliminary report. J. Mol. Biol. 221, 43–45 (1991).

    Article  CAS  Google Scholar 

  39. Howard, A.J. et al. The use of an imaging proportional counter in macromolecular crystallography. J. Appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  40. Fitzgerald, P.M.D. MERLOT, an integrate package of computer programs for the determination of crystal structure by molecular replacement. J. Appl. Crystallogr. 21, 273–278 (1988).

    Article  CAS  Google Scholar 

  41. Sussman, J.L. Constrained-restrained least-square (CORELS) refinement of proteins and nucleic acids. Methods Enzymol. 115, 271–303 (1985).

    Article  CAS  Google Scholar 

  42. Jones, T.A. & Thirup, S. Using known substructures in protein model building and crystallography. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  43. Brunger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  CAS  Google Scholar 

  44. Ramakrishnan, C. & Ramachandran, G.N. Stereochemical criteria for polypeptide and protein chain conformation. Biophys. J. 5, 909–933 (1965).

    Article  CAS  Google Scholar 

  45. Bernstein, F.C. et al. The protein data bank: a computer-based archive-file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  46. Kraulis, P., MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  47. Ferrin, T.E. et al. The MIDAS display system. J. Mol. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, J., Wu, CK., Hsiao, CD. et al. Crystal structure of the neurophysin—oxytocin complex. Nat Struct Mol Biol 3, 163–169 (1996). https://doi.org/10.1038/nsb0296-163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0296-163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing