Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystallographic observation of a covalent catalytic intermediate in a β-glycosidase

Abstract

The three-dimensional structure of a catalytically competent glycosyl-enzyme intermediate of a retaining β-1,4-glycanase has been determined at a resolution of 1.8 Å by X-ray diffraction. A f luorinated slow substrate forms an α-D-glycopyranosyl linkage to one of the two invariant carboxylates, Glu 233, as supported in solution by 19F-NMR studies. The resulting ester linkage is coplanar with the cyclic oxygen of the proximal saccharide and is inferred to form a strong hydrogen bond with the 2-hydroxyl of that saccharide unit in natural substrates. The active-site architecture of this covalent intermediate gives insights into both the classical double-displacement catalytic mechanism and the basis for the enzyme's specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koshland, D.E. Jr . Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. 28, 416–436 (1953).

    Article  CAS  Google Scholar 

  2. Sinnott, M.L. Catalytic mechanism of enzymic glycosyl transfer. Chem. Rev. 90, 1171–1202 (1990).

    Article  CAS  Google Scholar 

  3. Phillips, D.C. The hen egg-white lysozyme molecule. Proc. Natl. Acad. Sci. USA 57, 484–495 (1967).

    Article  CAS  Google Scholar 

  4. Ford, L.O., Johnson, L.N., Machin, P.A., Phillips, D.C. & Tjian, R. Crystal structure of a lysozyme-tetrasaccharide lactone complex. J. Mol. Biol. 88, 349–371 (1974).

    Article  CAS  PubMed  Google Scholar 

  5. Strynadka, N.C.J. & James, M.N.G. Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J. Mol. Biol. 220, 401–424 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Song, H., Inaka, K., Maenaka, K. & Matsushima, M. Structural changes of active site cleft and different saccharide binding modes in human lysozyme co-crystallized with hexa-N-acetyl-chitohexaose at pH 4.0. J. Mol. Biol. 244, 522–540 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Turner, M.A. & Howell, P.L. Structures of partridge egg-white lysozyme with and without tri-N-acetylchitotriose inhibitor at 1.9 Å resolution. Protein Sci. 4, 442–449 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCarter, J.D. & Withers, S.G. Mechanisms of glycoside hydrolysis. Curr. Op. Struct. Biol. 4, 885–892 (1994).

    Article  CAS  Google Scholar 

  9. Tull, D. & Withers, S.G. Mechanisms of cellulases and xylanases: a detailed kinetic study of the exo-β— 1,4-glycanase from Cellulomonas fimi. Biochemistry 266, 15621–15625 (1994).

    Google Scholar 

  10. Withers, S.G., Rupitz, K. & Street, I.P. 2-Deoxy-2-fluoro-D-glycosyl fluorides. J. Biol. Chem. 263, 7929–7932 (1988).

    CAS  PubMed  Google Scholar 

  11. Tull, D. et al. Glutamic acid 274 is the nucleophile in the active site of a “retaining” exoglucanase from Cellulomonas fimi. J. Biol. Chem. 266, 15621–15625 (1991).

    CAS  PubMed  Google Scholar 

  12. Withers, S.G. & Aebersold, R. Approaches to labeling and identification of active site residues in glycosidases. Protein Sci. 4, 361–372 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roeser, K.-R. & Legler, G. Role of sugar hydroxyl groups in glycoside hydrolysis: Cleavage mechanism of deoxyglucosides and related substrates by β-glucosidase A3 from Aspergillus wentii. Biochem. Biophys. Acta 657, 321–333 (1981).

    CAS  PubMed  Google Scholar 

  14. McCarter, J.D., Adams, M.J. & Withers, S.G. Binding energy and catalysis: Fluorinated and deoxygenated glycosides as mechanistic probes of Escherichia coli (lac Z) β-galactosidase. Biochem. J. 286, 721–727 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Withers, S.G. & Street, I.P. Identification of a covalent α-D-glucopyranosyl enzyme intermediate formed on a β-glucosidase. J. Am. Chem. Soc. 110, 8551–8553 (1988).

    Article  CAS  Google Scholar 

  16. Withers, S.G. et al. Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a “retaining” glycosidase. J. Am. Chem. Soc. 112, 5887–5889 (1990).

    Article  CAS  Google Scholar 

  17. Gilkes, N.R., Langford, M.L., Kilburn, D.G., Miller, R.C. Jr., & Warren, R.A.J. Mode of action and substrate specificities of cellulases from cloned bacterial genes. J. Biol. Chem. 259, 10455–10459 (1984).

    CAS  PubMed  Google Scholar 

  18. Gilkes, N.R. et al. Structural and functional relationships in two families of β-1,4-glycanases. Eur. J. Biochem. 202, 36573677 (1991).

    Article  Google Scholar 

  19. Derewenda, U. et al. Crystal structure, at 2.6-Å resolution, of the Streptomyces lividans xylanase A, a member of the F family of β-1,4-D-glycanases. J. Biol. Chem. 269, 20811–20814 (1994).

    CAS  PubMed  Google Scholar 

  20. Harris, G.W. et al. Structure of the catalytic core if the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure 2, 1107–1116 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Dominquez, R. et al. A common protein fold and similar active site in two distinct families of β-glycanases. Nature Struct. Biol. 2, 569–576 (1995).

    Article  Google Scholar 

  22. Tull, D., Miao, S., Withers, S.G. & Aebersold, R. Identification of derivatized peptides without radiolabels: tandem mass spectrometric localization of the tagged active-site nucleophiles of two cellulases and a β-glucosidase. Anal. Biochem. 224, 509–514 (1994).

    Article  Google Scholar 

  23. Candour, R.D. On the importance of orientation in general base catalysis by carboxylate. Bioorg. Chem. 10, 169–176 (1981).

    Article  Google Scholar 

  24. MacLeod, A.M., Lindhorst, T., Withers, S.G., & Warren, R.A.J. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: Evidence from detailed kinetic studies of mutants. Biochemistry 33, 6371–6376 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. White, A., Withers, S.G., Gilkes, N.R. & Rose, D.R. Crystal structure of the catalytic domain of the β-1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546–2552 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Wolfenden, R. & Kati, W.M. Testing the limits of protein ligand-binding discrimination with transition-state analog inhibitors. Acc. Chem. Res. 24, 209–215 (1991).

    Article  CAS  Google Scholar 

  27. Cleland, W.W. & Kreevoy, M.M. Low-barrier hydrogen bonds and enzymic catalysis. Science 264, 1887–1890 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Frey, P.A., Whitt, S.A. & Tobin, J.B. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science 264, 1927–1930 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Tobin, J.B., Whitt, S.A., Cassidy, C.S. & Frey, P.A. Low-barrier hydrogen bonding in molecular complexes analogous to histidine and aspartate in the catalytic triad of serine proteses. Biochemistry 34, 6919–6924 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Moult, J., Eshdat, Y.E. & Sharon, N. The identification by x-ray crystallography of the site of attachment of an affinity label to hen egg-white lysozyme. J. Molec. Biol. 75, 1–4 (1973).

    Article  CAS  PubMed  Google Scholar 

  31. Keitel, T., Simon, O., Borriss, R. & Heinemann, U. Molecular and active-site structure of a Bacillus 1,3-1,4-β-glucanase. Proc. Natl. Acad. Sci. USA 90, 5287–5291 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuroki, R., Weaver, L.H. & Matthews, B.W. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science 262, 2030–2033 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Bedarkar, S. et al. Crystallization and preliminary X-ray diffraction analysis of the catalytic domain of Cex, an Exo-1,4-glucanase and β-1,4-xylanase from the bacterium Cellulomonas fimi. J. Mol. Biol. 228, 693–695 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Brünger, AT., Kuriyan, J. & Karplus, M. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  35. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  PubMed  Google Scholar 

  36. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  37. Model, A., Kirn, S.-H. & Brünger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr. A48, 851–858 (1992).

    Google Scholar 

  38. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  39. Evans, S. SETOR: Hardware lighted three-dimensional solid model representations of macromolecules. J. Molec. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  40. Gilkes, N.R., Henrissat, B., Kilburn, D.G., Miller, R.C., Jr & Warren, R.A.J. Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303–315 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Luzzati, V. Traitement statistique des erreurs dans la dètermination des structures cristallines. Acta Crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  42. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A47, 392–400 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, A., Tull, D., Johns, K. et al. Crystallographic observation of a covalent catalytic intermediate in a β-glycosidase. Nat Struct Mol Biol 3, 149–154 (1996). https://doi.org/10.1038/nsb0296-149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0296-149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing