Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The 2.0 Å structure of human ferrochelatase, the terminal enzyme of heme biosynthesis

Abstract

Human ferrochelatase (E.C. 4.99.1.1) is a homodimeric (86 kDa) mitochondrial membrane-associated enzyme that catalyzes the insertion of ferrous iron into protoporphyrin to form heme. We have determined the 2.0 Å structure from the single wavelength iron anomalous scattering signal. The enzyme contains two NO-sensitive and uniquely coordinated [2Fe-2S] clusters. Its membrane association is mediated in part by a 12-residue hydrophobic lip that also forms the entrance to the active site pocket. The positioning of highly conserved residues in the active site in conjunction with previous biochemical studies support a catalytic model that may have significance in explaining the enzymatic defects that lead to the human inherited disease erythropoietic protoporphyria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of HFc.
Figure 2: Structure of the HFc dimer.
Figure 3: A sectional view of the HFc active site pocket shown as a, a cartoon drawing and b, a ribbon drawing.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Dailey, H.A. In Mechanism of metallocenter assembly (ed. Dailey, H.A.) 77–89 (VCH, New York; 1996).

    Google Scholar 

  2. Hansson, M. & Hederstedt, L. Eur J Biochem 220, 201–208 (1994).

    Article  CAS  Google Scholar 

  3. Al-Karadaghi, S., Hansson, M., Nikonov, S., Jonsson, B. & Hederstedt, L. Structure 5, 1501–1510 (1997).

    Article  CAS  Google Scholar 

  4. Dailey, H.A., Sellers, V.M. & Dailey, T.A. J. Biol. Chem. 269, 390–395 (1994).

    CAS  PubMed  Google Scholar 

  5. Dailey, H.A. & Fleming, J.E. J. Biol. Chem. 258, 11453–11459 (1983).

    CAS  PubMed  Google Scholar 

  6. Lavallee, D.K. In Mechanistic principles of enzyme activity (eds Liebman, J.F. & Greenberg, A.) 279–311 (VCH, New York; 1988).

    Google Scholar 

  7. Cochran, A.G. & Schultz, P.G. Science 249, 781–783 (1990).

    Article  CAS  Google Scholar 

  8. Blackwood, M.E., Rush, T.S., Medlock, A., Dailey, H.A. & Spiro, T.G. J. Am. Chem. Soc. 119, 12170–12174 (1997).

    Article  CAS  Google Scholar 

  9. Dailey, H.A. In Biosynthesis of heme and chlorophylls (ed. Dailey, H.A.) 123–161 (McGraw-Hill, New York; 1990).

    Google Scholar 

  10. Bonkowsky, H.L., Bloomer, J.R., Ebert, P.S. & Mahoney, M.J. J. Clin. Invest. 56, 1139–1148 (1975).

    Article  CAS  Google Scholar 

  11. Nordmann, Y. & Deybach, J.C. In Biosynthesis of heme and chlorophylls (ed. Dailey, H.A.) 491–542 (McGraw-Hill, New York; 1990).

    Google Scholar 

  12. Crouse, B.R., Sellers, V.M., Finnegan, M.G., Dailey, H.A. & Johnson, M.K. Biochemistry 35, 16222–16229 (1996).

    Article  CAS  Google Scholar 

  13. Sellers, V.M., Wang, K.F., Johnson, M.K. & Dailey, H.A. J. Biol. Chem. 273, 22311–22316 (1998).

    Article  CAS  Google Scholar 

  14. Gora, M., Rytka, J. & Labbe-Bois, R. Arch. Biochem. Biophys. 361, 231–240 (1999).

    Article  CAS  Google Scholar 

  15. Gora, M., Grzybowska, E., Rytka, J. & Labbe-Bois, R. J. Biol. Chem. 271, 11810–11816 (1996).

    Article  CAS  Google Scholar 

  16. Lecerof, D., Fodje, M., Hansson, A., Hansson, M. & Al-Karadaghi, S. J. Mol. Biol. 297, 221–232 (2000).

    Article  CAS  Google Scholar 

  17. Bain-Ackerman, M.J. & Laevellee, D.K. Inorg. Chem. 18, 3358–3364 (1979).

    Article  CAS  Google Scholar 

  18. Burden, A.E. et al. Biochim. Biophys. Acta 1435, 191–197 (1999).

    Article  CAS  Google Scholar 

  19. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  20. Furey, W. & Swaminathan, S. Methods Enzymol. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

  21. Wang, B.C. Methods Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  22. Read, R.J. Acta Crystallogr. D 42, 140–149 (1986).

    Article  Google Scholar 

  23. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard. Acta Crystallogr A 47, 110–119 (1991).

    Article  Google Scholar 

  24. Perrakis, A., Morris R. & Lamzin V.S., Nature Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  25. Brunger, A.T. et al. Acta Crystallogr D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  26. Ramakrishnan, C. & Ramachandran, G.N. Biophys. J. 5, 909–933 (1965).

    Article  CAS  Google Scholar 

  27. Berman, H.M. . et al. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  28. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Barton, G.J. Methods Enzymol. 183, 403–428 (1990).

    Article  CAS  Google Scholar 

  30. Barton, G.J. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  31. Nicholls A., Sharp K.A. & Honig B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ferrara and Molecular Structure Corporation, The Woodlands, Texas, for collecting the R-AXIS data, and M.K. Johnson for discussions concerning the cluster. This work was supported in part by a grant from the NIH to H.A.D., and funds from University of Georgia Research Foundation, and the Georgia Research Alliance to B.-C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CK., Dailey, H., Rose, J. et al. The 2.0 Å structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. Nat Struct Mol Biol 8, 156–160 (2001). https://doi.org/10.1038/84152

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing