Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of HAP1-18–DNA implicates direct allosteric effect of protein–DNA interactions on transcriptional activation

Abstract

HAP1 is a yeast transcriptional activator that binds with equal affinity to the dissimilar upstream activation sequences UAS1 and UASCYC7, but activates transcription differentially when bound to each site. HAP1-18 harbors an amino acid change in the DNA binding domain. While binding UAS1 poorly, HAP1-18 binds UASCYC7 with wild-type properties and activates transcription at elevated levels relative to HAP1. We have determined the structure of HAP1-18–UASCYC7 and have compared it to HAP1–UASCYC7. Unexpectedly, the single amino acid substitution in HAP1-18 nucleates a significantly altered hydrogen bond interface between the protein and DNA resulting in DNA conformational changes and an ordering of one N-terminal arm of the protein dimer along the DNA minor groove. These observations, together with a large subset of transcriptionally defective mutations in the HAP1 DNA-binding domain that map to the HAP1-DNA interface, suggest that protein–DNA interactions may have direct allosteric effects on transcriptional activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The HAP1 DNA-binding domain, UASCYC7 and UAS1 sequences, and experimental electron density map of the HAP1-18–DNA complex.
Figure 2: Alignment of HAP1 and HAP1-18 and the protein–DNA interface.
Figure 3: Location of positive control mutations in the HAP1 structure.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Brent, R. & Ptashne, M. Cell 43, 729–736 (1985).

    Article  CAS  Google Scholar 

  2. Luo, X. & Sawadogo, M. Mol. Cell. Biol. 16, 1367–1375 (1996).

    Article  CAS  Google Scholar 

  3. Mangelsdorf, D.J. et al. Cell 66, 555–561 (1991).

    Article  CAS  Google Scholar 

  4. Mangelsdorf, D. J. et al. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  5. Lefstin, J. & Yamamoto, K.R. Nature 392, 885–888 (1998).

    Article  CAS  Google Scholar 

  6. Kim, K.-S. & Guarente, L. Nature 343, 200–203 (1989).

    Article  Google Scholar 

  7. Turcotte, B. & Guarente, L. Genes Devel. 6, 2001–2009 (1992).

    Article  CAS  Google Scholar 

  8. King, D.A., Zhang, L., Guarente, L. & Marmorstein, R. Nature Struct. Biol. 6, 64–71 (1999).

    Article  CAS  Google Scholar 

  9. Ha, N., Hellaur, K. & Turcotte, B. Nucleic Acids Res. 24, 1453– 1459 (1996).

    Article  CAS  Google Scholar 

  10. Lefstin, J., Thoma, J. & Yamamoto, K. Gene. Devel. 8, 2842– 2856 (1994).

    Article  CAS  Google Scholar 

  11. Kabsch, W. J. Appl. Crystallogr. 21, 916–924 (1988b).

  12. Kabsch, W. J. Appl. Crystallogr. 21, 67–71 (1988a).

  13. Gewirth, D., Otwinowski, Z. & Minor, W. The HKL Version 1.0 manual (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

  14. Marmorstein, R., Carey, M., Ptashne, M. & Harrison, S.C. Nature 356, 408–414 (1992).

    Article  CAS  Google Scholar 

  15. Furey, W. & Swaminathan, S. Meth. Enz. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

  16. Jones, T.A., Zou, J.Y. & Cowen, S.W. Acta Crystallogr. A 47, 110– 119 (1991).

    Article  Google Scholar 

  17. Timmerman, J. et al. J. Mol. Biol. 259, 792– 804 (1996).

    Article  CAS  Google Scholar 

  18. Swaminathan, K., Flynn, P., Reece, R.R. & Marmorstein, R. Nature Struct. Biol. 4, 751–759 (1997).

    Article  CAS  Google Scholar 

  19. Brünger, A.T. X-PLOR 3.1, A system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  20. Dodson, E.J., Winn, M. & Ralph, A. Meth. Enz.. 277, 620–633 (1997).

    Article  CAS  Google Scholar 

  21. Brünger, A.T. & Krukowski, A. Acta Crystallogr. A46, 585–593 (1990).

    Article  Google Scholar 

  22. Rice, L.M. & Brünger, A.T. Proteins 19, 277–290 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank G. Van Duyne and M. Lewis for use of their MAR Image Plate Detector and A. Lukens, T. Strams, C. Lesburg, Y. Mo, R.Venkataramani, S. Benson, X. Li and K. Swaminathan for useful discussions. This work was supported by a grant from NIH and a junior faculty research award from the ACS to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Marmorstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, D., Zhang, L., Guarente, L. et al. Structure of HAP1-18–DNA implicates direct allosteric effect of protein–DNA interactions on transcriptional activation. Nat Struct Mol Biol 6, 22–27 (1999). https://doi.org/10.1038/4893

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing