Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site


Helix packing is critical for RNA tertiary structure formation, although the rules for helix–helix association within structured RNAs are largely unknown. Docking of the substrate helix into the active site of the Tetrahymena group I ribozyme provides a model system to study this question. Using a novel chemogenetic method to analyze RNA structure in atomic detail, we report that complementary sets of noncanonical base pairs (a G·U wobble pair and two consecutively stacked sheared A·A pairs) create an RNA helix packing motif that is essential for 5′-splice site selection in the group I intron. This is likely to be a general motif for helix–helix interaction within the tertiary structures of many large RNAs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Strobel, S.A. & Doudna, J.A. RNA Seeing Double: Close-Packing of Helices in RNA Tertiary Structure. Trends Biochem. Sci. 22, 262–266 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Gutell, R.R., Larsen, N. & Woese, C.R. Lessons from an Evolving rRNA: 16S and 23S rRNA Structures from a Comparative Perspective. Microbiol. Rev. 58, 10–26 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Strobel, S.A. & Cech, T.R. Minor groove recognition of the conserved G·U pair at the Tetrahymena ribozyme reaction site. Science 267, 675–679 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Waring, R.B., Towner, P., Minter, S.J. & Davies, R.W. Splice-site selection by a self-splicing RNA of Tetrahymena. Nature 321, 133–139 (1986).

    CAS  Article  Google Scholar 

  6. 6

    Been, M.D. & Cech, T.R. One binding site determines sequence specificity of tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell 47, 207–216 (1986).

    CAS  Article  Google Scholar 

  7. 7

    Zaug, A.J., Been, M.D. & Cech, T.R., The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 324, 429–433 (1986).

    CAS  Article  Google Scholar 

  8. 8

    Herschlag, D. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry 31, 1386–1399 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Bevilacqua, P.C., Kierzek, R., Johnson, K.A. & Turner, D.H. Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods. Science 258, 1355–1358 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Strobel, S.A. & Cech, T.R. Translocation of an RNA duplex on a ribozyme. Nature Struct. Biol. 1, 13–17 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Murphy, F.L. & Cech, T.R. Alteration of substrate specificity for the endoribonucleoytic cleavage of RNA by the Tetrahymena ribozyme. Proc. Natl. Acad. Sci. U.S.A. 86, 9218–9222 (1989).

    CAS  Article  Google Scholar 

  12. 12

    Doudna, J.A. & Szostak, J.W. RNA-catalysed synthesis of complementary-strand RNA. Nature 339, 519–522 (1989).

    CAS  Article  Google Scholar 

  13. 13

    Strobel, S.A. & Cech, T.R. Exocyclic amine of the conserved G·U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5′ -splice site selection and transition state stabilization. Biochemistry 35, 1201–1211 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Strobel, S.A. & Cech, T.R. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 32, 13593–13604 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Wang, J.-F., Downs, W.D. & Cech, T.R. Movement of the guide sequence during RNA catalysis by a group I ribozyme. Science 260, 504–508 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Strobel, S.A. & Shetty, K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc. Natl. Acad. Sci. USA 94, 2903–2908 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Pyle, A.M., Murphy, F.L. & Cech, T.R. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358, 123–128 (1992).

    CAS  Article  Google Scholar 

  19. 19

    Gaur, R.K. & Krupp, G. Modification interference approach to detect ribose moieties important for the optimal activity of a ribozyme. Nucleic Acids Res. 21, 21–26 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Conrad, F., Hanne, A., Gaur, R.K. & Krupp, G. Enzymatic synthesis of 2′ -modified nucleic acids: identification of important phosphate and ribose moieties in RNase P substrates. Nucleic Acids Res. 23, 1845–1853 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Eckstein, F. Nucleoside phosphorothioates. Ann. Rev. Biochem. 54, 367–402 (1985).

    CAS  Article  Google Scholar 

  22. 22

    Arabshahi, A. & Frey, P.A. A simplified procedure for synthesizing nucleoside 1-thiotriphosphates: dATPαS, dGTPαS, UTPαS, and dTTPαS. Biochem. Biophys. Res. Com. 204, 150–155 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Beaudry, A.A. & Joyce, G.F. Directed evolution of an RNA enzyme. Science 257, 635–641 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Sousa, R. & Padilla, R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 14, 4609–4621 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Mei, R. & Herschlag, D. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron. Insights into catalysis and the second step of self-splicing. Biochemistry 35, 5796–5809 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Gish, G. & Eckstein, F. DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240, 1520–1522 (1988).

    CAS  Article  Google Scholar 

  27. 27

    SantaLucia, J. & Turner, D.H. Structure of (rGGCGAGCC)2 in solution from NMR and restrained moleuclar dynamics. Biochemistry 32, 12612–12623 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Damberger, S.H. & Gutell, R.R. A comparative database of group I intron structures. Nucleic Acids Res. 22, 3508–3510 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Allain, F.H.T. & Varani, G. Structure of the P1 helix from group I self-splicing introns. J. Mol. Biol. 250, 333–353 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Pyle, A.M. et al. Replacement of the Conserved G·U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity. Biochemistry 33, 13856–13863 (1994).

    CAS  Article  Google Scholar 

  31. 31

    Knitt, D.S., Narlikar, G.J. & Herschlag, D. Dissection of the role of the conserved G·U pair in group I RNA self-splicing. Biochemistry 33, 13864–13879 (1994).

    CAS  Article  Google Scholar 

  32. 32

    Doudna, J.A., Cormack, B.P. & Szostak, J.W. RNA structure, not sequence, determines the 5′ splice-site specificity of a group I intron. Proc. Natl. Acad. Sci. USA 86, 7402–7406 (1989).

    CAS  Article  Google Scholar 

  33. 33

    Gautheret, D., Konings, D. & Gutell, R.R. A major family of motifs involving G·A mismatches in ribosomal RNA. J. Mol. Biol. 242, 1–8 (1994).

    CAS  Article  Google Scholar 

  34. 34

    SantaLucia, J., Kierzek, R. & Turner, D.H. Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochemistry 29, 8813–8819 (1990).

    CAS  Article  Google Scholar 

  35. 35

    Gautheret, D., Konings, D. & Gutell, R.R. G·U base pairing motifs in ribosomal RNA. RNA 1, 807–814 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Murphy, F.L. & Cech, T.R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J. Mol. Biol. 236, 49–63 (1994).

    CAS  Article  Google Scholar 

  37. 37

    Pley, H.W., Flaherty, K.M. & McKay, D.B. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111–113 (1994).

    CAS  Article  Google Scholar 

  38. 38

    Tanner, M.A. & Cech, T.R. Activity and thermostability of the small self-splicing group I intron in the pre-tRNAIle of the purple bacterium Azoarcus. RNA 2, 74–83 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Costa, M. & Michel, F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14, 1276–1285 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Christian, E.L. & Yarus, M. Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena. Biochemistry 32, 4475–4480 (1993).

    CAS  Article  Google Scholar 

  41. 41

    Carson, M. RIBBONS 2.0 Manual (University of Alabama at Birmingham, Alabama, USA; 1991).

    Google Scholar 

  42. 42

    Nicholls, A., GRASP: graphical respresentation and analysis of surface properties (Columbia University, New York, USA; 1993).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Scott A. Strobel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strobel, S., Ortoleva-Donnelly, L., Ryder, S. et al. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat Struct Mol Biol 5, 60–66 (1998).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing