Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain

Abstract

A novel off-resonance rotating-frame 15N NMR spin relaxation experiment is used to characterize conformational fluctuations with correlation times between 32 and 175 μs in the third fibronectin type III domain of human tenascin-C. Conformational fluctuations of contiguous regions of the β-sandwich structure of the type III domain may represent collective motions, such as transient twisting or breathing of the β-sheets. Flexibility of the loop containing the Arg-Gly-Asp (RGD) tripeptide may affect the accessibility of this motif in protein-protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frauenfelder, H., Parak, F. & Young, R.D. Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–479 (1988).

    Article  CAS  Google Scholar 

  2. Creighton, T.E. . Proteins. Structures and Molecular Properties 1–507 (W. H. Freeman & Co., New York; 1993).

    Google Scholar 

  3. Weber, G. Protein interactions 1–293 (Chapman and Hall, New-York; 1992).

    Google Scholar 

  4. Akke, M. & Palmer, A.G. Monitoring macromolecular motions on microsecond-millisecond time scales by R1ρ–R1 constant-relaxation-time NMR spectroscopy. J. Am. Chem. Soc. 118, 911–912 (1996).

    Article  CAS  Google Scholar 

  5. Feher, V.A., Baldwin, E.P. & Dahlquist, F.W. Access of ligands to cavities within the core of a protein is rapid. Nature Struct. Biol. 3, 516–521 (1996).

    Article  CAS  Google Scholar 

  6. Denisov, V.P., Peters, J., Hörlein, H.D. & Halle, B. Using buried water molecules to explore the energy landscape of proteins. Nature Struct. Biol. 3, 505–509 (1996).

    Article  CAS  Google Scholar 

  7. Wagner, G. Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes. Q. Rev. Biophys. 16, 1–57 (1983).

    Article  CAS  Google Scholar 

  8. Szyperski, T., Luginbühl, P., Otting, G., Güntert, P. & Wüthrich, K. Protein dynamics studied by rotating frame 15N spin relaxation times. J. Biomol. NMR 3, 151–164 (1993).

    CAS  Google Scholar 

  9. Peng, J. & Wagner, G. Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry 34, 16733–16752 (1995).

    Article  CAS  Google Scholar 

  10. Phan, I.Q.H., Boyd, J. & Campbell, I.D. Dynamic studies of a fibronectin type I module pair at three frequencies: Anisotropic modelling and direct determination of Conformational exchange. J. Biomol. NMR 8, 369–378 (1996).

    Article  CAS  Google Scholar 

  11. Wyss, D.F., Dayie, K.T. & Wagner, G. The counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with millisecond to microsecond motions. Prot. Sci. 6, 534–542 (1997).

    Article  CAS  Google Scholar 

  12. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. NMR evidence for slow collective motions in cyanometmyoglobin. Nature Struct. Biol. 4, 292–297 (1997).

    Article  CAS  Google Scholar 

  13. Orekhov, V.Y., Pervushin, K.V. & Arseniev, A.S. Backbone dynamics of (1–71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy. Eur. J. Biochem. 219, 887–896 (1994).

    Article  CAS  Google Scholar 

  14. Tjandra, N., Kuboniwa, H., Ren, H. & Bax, A. Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. Eur. J. Biochem. 230, 1014–1024 (1995).

    Article  CAS  Google Scholar 

  15. Mandel, A.M., Akke, M. & Palmer, A.G. Dynamics of ribonuclease H: Temperature dependence of motion on multiple time scales. Biochemistry 35, 16009–16023 (1996).

    Article  CAS  Google Scholar 

  16. Ogata, K. et al. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nature Struct. Biol. 3, 178–187 (1996).

    Article  CAS  Google Scholar 

  17. Olejniczak, E.T., Zhou, M.M. & Fesik, S.W. Changes in the NMR-derived motional parameters of the insulin receptor substrate I phosphotyrosine binding domain upon binding to an interleukin 4 receptor phosphopeptide. Biochemistry 36, 4118–4124 (1997).

    Article  CAS  Google Scholar 

  18. Leahy, D., Hendrickson, W.A., Aukhil, I. & Erickson, H.P. Structure of a fibronectin Type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987–991 (1992).

    Article  CAS  Google Scholar 

  19. Main, A.L., Harvey, T.S., Baron, M., Boyd, J. & Campbell, I.D. The three-dimensional structure of the tenth type III module of fibronectin: An insight into RGD-mediated interactions. Cell 71, 671–678 (1992).

    Article  CAS  Google Scholar 

  20. Campbell, I.D. & Spitzfaden, C. Building proteins with fibronectin type III modules. Structure 2, 333–337 (1994).

    Article  CAS  Google Scholar 

  21. Bork, P., Downing, A.K., Kieffer, B. & Campbell, I.D. Structure and distribution of modules in extracellular proteins. Q. Rev. Biophys. 28, 119–167 (1996).

    Article  Google Scholar 

  22. Erickson, H.P., Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr. Opin. Cell Biol. 5, 869–876 (1993).

    Article  CAS  Google Scholar 

  23. Chiquet-Ehrismann, R., Tenascins, a growing family of extracellular matrix proteins. Experientia 51, 853–862 (1995).

    Article  CAS  Google Scholar 

  24. Scholze, A., Götz, B. & Faissner, A. Glial cell interactions with tenascin-C: adhesion and repulsion to different tenascin-C domains is cell type related. Int. J. Devl. Neuroscience 14, 315–329 (1996).

    Article  CAS  Google Scholar 

  25. Clore, G.M., Driscoll, P.C., Wingfield, P.T. & Gronenborn, A.M. Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 7387–7401 (1990).

    Article  CAS  Google Scholar 

  26. Kay, I.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  27. Le, H. & Oldfield, E. Correlation between 15N NMR chemical shifts in proteins and secondary structure. J. Biomol. NMR 4, 341–348 (1994).

    Article  CAS  Google Scholar 

  28. de Dios, A.C., Pearson, J.G. & Oldfield, E . Secondary and tertiary structural effects on protein NMR chemical shifts: An ab initio approach. Science 260, 1491–1496 (1993).

    Article  CAS  Google Scholar 

  29. Brüschweiler, R. & Wright, P.E. NMR order parameters of biomolecules: A new analytical representation and application to the Gaussian axial fluctuation model. J. Am. Chem. Soc. 116, 8426–8427 (1994).

    Article  Google Scholar 

  30. Pedersen, T.G., Thomsen, N.K., Andersen, K.V., Madsen, J.C. & Poulsen, F.M. Determination of the rate constants k1 and k2 of the Linderstrøm-Lang model for protein amide hydrogen exchange. A study of the individual amides in hen egg-white lysozyme. J. Mol. Biol. 230, 651–660 (1993).

    Article  CAS  Google Scholar 

  31. Clarke, J., Hamill, S.J. & Johnson, C.M. Folding and stability of a fibronectin type III domain of human tenascin. J. Mol. Biol. 270, 771–778 (1997).

    Article  CAS  Google Scholar 

  32. Wendt, B. et al. Effect of amino acid substitutions and deletions on the thermal stability, the pH stability and unfolding by urea of bovine calbindin D9k. Eur. J. Biochem. 175, 439–445 (1988).

    Article  CAS  Google Scholar 

  33. Beeser, S.A., Goldenberg, D.P. & Oas, T.G. Enhanced protein flexibility caused by a destabilizing amino acid replacement in BPTI. J. Mol. Biol. 269, 154–164 (1997).

    Article  CAS  Google Scholar 

  34. Carr, P.A., Erickson, H.P. & Palmer, A.G. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin. Structure 5, 949–959 (1997).

    Article  CAS  Google Scholar 

  35. Palmer, A.G., Williams, J. & McDermott, A. Nuclear magnetic resonance studies of biopolymer dynamics. J. Phys. Chem. 100, 13293–13310 (1996).

    Article  CAS  Google Scholar 

  36. Schurr, J.M., Babcock, H.P. & Fujimoto, B.S. A test of the model-free formulas.Effects of anisotropic rotational diffusion and dimerization. J. Magn. Reson., Ser. B 105, 211–224 (1994).

    Article  CAS  Google Scholar 

  37. Tjandra, N., Wingfield, P., Stahl, S. & Bax, A. Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J. Biomol. NMR 8, 273–284 (1996).

    Article  CAS  Google Scholar 

  38. Mandel, A.M. & Palmer, A.G. Measurement of relaxation rate constants using constant-time accordion heteronuclear NMR spectroscopy. J. Magn. Reson., Ser. A 110, 62–72 (1994).

    Article  CAS  Google Scholar 

  39. Brüschweiler, R., Liao, X. & Wright, P.E. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268, 886–889 (1995).

    Article  Google Scholar 

  40. Lee, L.K., Ranee, M., Chazin, W.J. & Palmer, A.G. Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13Cα nuclear spin relaxation. J. Biomol. NMR 9, 287–298 (1997).

    Article  CAS  Google Scholar 

  41. Akke, M., Carr, P.A. & Palmer, A.G. Heteronuclear-correlation NMR spectroscopy with simultaneous isotope filtration, quadrature detection, and sensitivity enhancement using z rotations. J. Magn. Reson., Ser. B104, 298–302 (1994).

    Article  CAS  Google Scholar 

  42. Davis, D.G., Perlman, M.E. & London, R.E. Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1ρ and T2 (CPMG) methods. J. Magn. Reson., Ser. B 104, 266–275 (1994).

    Article  CAS  Google Scholar 

  43. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T., Numerical Recipes. The Art of Scientific Computing 1-963 (Cambridge University Press, Cambridge; 1986).

    Google Scholar 

  44. Fushman, D., Cahill, S. & Cowburn, D. The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. J. Mol. Biol. 266, 173–194 (1997).

    Article  CAS  Google Scholar 

  45. Johnson, M.L., Correia, J.J., Yphantis, D.A. & Halvorson, H.R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J. 36, 575–588 (1981).

    Article  CAS  Google Scholar 

  46. Eftink, M.R. Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins. Meth. Enz. 259, 487–512 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akke, M., Liu, J., Cavanagh, J. et al. Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain. Nat Struct Mol Biol 5, 55–59 (1998). https://doi.org/10.1038/nsb0198-55

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0198-55

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing