Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose

Abstract

The X-ray structure of a sucrose-specific porin (ScrY) from Salmonella typhimurium has been determined by multiple isomorphous replacement at 2.4 Å resolution both in its uncomplexed form and with bound sucrose. ScrY is a noncrystallographic trimer of identical subunits, each with 413 structurally well-defined amino acids. A monomer is built up of 18 anti-parallel β-strands surrounding a hydrophilic pore, with a topology closely similar to that of maltoporin. Two non-overlapping sucrose-binding sites were identified in difference Fourier maps. The higher permeability for sucrose of ScrY as compared to maltoporin is mainly accounted for by differences in their pore-lining residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lugtenberg, B. & Van Alphen, L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim. Biophys. Acta 737, 51–115 (1983).

    Article  CAS  Google Scholar 

  2. Bayer, M.E. & Bayer, M.H. in Bacterial Cell Wall (eds Ghuysen, J.-M. & Hakenbeck, R.) 447–462 (Elsevier Sci. B.V., Amsterdam; 1994).

    Book  Google Scholar 

  3. Riley, M. & Labedan, B. in Escherichia coli and Salmonella (ed. Neidhardt, F.C.) 2118–2202 (ASM Press, Washington, D.C.; 1996).

    Google Scholar 

  4. Boos, W. & Lucht, J.M. in Escherichia coli and Salmonella (ed. Neidhardt, F.C.) 1175–1209 (ASM Press, Washington, D.C.; 1996).

    Google Scholar 

  5. Postma, P.W., Lengeler, J. & Jacobson, G.R. in Escherichia coli and Salmonella (ed. Neidhardt, F.C.) 1149–1174 (ASM Press, Washington, D.C.; 1996).

    Google Scholar 

  6. Benz, R. & Bauer, K. Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria. Eur.J.Biochem. 176, 1–19 (1988).

    Article  CAS  Google Scholar 

  7. Welte, W., Nestel, U., Wacker, T. & Diederichs, K. Structure and function of the porin channel. Kidney Int. 48, 930–940 (1995).

    Article  CAS  Google Scholar 

  8. Delcour, A.H., Adler, J., Kung, C. & Martinac, B. Membrane-derived oligosaccha-rides (MDO's) promote closing of an E. coli porin channel. FEBS Lett. 304, 216–220 (1992).

    Article  CAS  Google Scholar 

  9. Welte, W., Diederichs, K., Przybylski, M., Glocker, M., Benz, R. & Breed, J. X-ray crystallographic and mass spectrometric structure determination and functional characterization of succinylated porin from R. capsulatus : Implications for ion selectivity and single-channel conductance. In Proceedings of the NATO Advanced workshop “New Methods for the Study of Molecular Aggregates” (eds Standing, K. & Ens, W.) in the press.

  10. Weiss, M.S. et al. Molecular architecture and electrostatic properties of a bacterial porin. Science 254, 1627–1630 (1991).

    Article  CAS  Google Scholar 

  11. Cowan, S.W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992).

    Article  CAS  Google Scholar 

  12. Kreusch, A., Neubüser, A., Schiltz, E., Weckesser, J. & Schulz, G.E. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Protein Sci. 3, 58–63 (1994).

    Article  CAS  Google Scholar 

  13. Hirsch, A., Diederichs, K., Breed, J., Saxena, K., Richter, O.-M., Ludwig, B. & Welte, W. The structure of porin from Paracoccus denitrificans at 3.1 Å resolution. FEBS Lett. 404, 208–210 (1997).

    Article  CAS  Google Scholar 

  14. Eisenberg, G. & Dani, J.A. An Introduction to Molecular Architecture and Permeability of Ion Channels. Ann. Rev. Biophys. Biophys. Chem. 16, 205–226 (1987).

    Article  Google Scholar 

  15. Glasstone, S., Laidler, K.J. & Eyring, H. The Theory of Rate Processes (McGraw Hill Book Comp., New York and London; 1941).

    Google Scholar 

  16. Frauenfelder, H. & Wolynes, P.G. Rate Theories and Puzzles of Hemeprotein Kinetics. Science 229, 337–345 (1985).

    Article  CAS  Google Scholar 

  17. Rosenbusch, J.P. Characterization of the major envelope protein from Escherichia coli. J. Biol. Chem. 249, 8019–8029 (1974).

    CAS  PubMed  Google Scholar 

  18. Birge, E. Bacterial and Bacteriophage Genetics (Springer Verlag Berlin; 1981).

    Book  Google Scholar 

  19. Death, A., Notley, L. & Ferenci, T. Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress. J. Bacteriol. 175, 1475–1483 (1993).

    Article  CAS  Google Scholar 

  20. Benz, R., Schmid, A. & Vos-Scheperkeuter, G.H. Mechanism of sugar transport through the sugar-specific LamB channel of Escherichia coli outer membrane. J. Membrane Biol. 100, 21–29 (1987).

    Article  CAS  Google Scholar 

  21. Schirmer, T., Keller, T.A., Wang, Y. & Rosenbusch, J.P. Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267, 512–514 (1995).

    Article  CAS  Google Scholar 

  22. Dutzler, R., Wang, Y.-F., Rizkallah, P.J., Rosenbusch, J.P. & Schirmer, T. Crystal structures of the various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure 4, 127–134 (1996).

    Article  CAS  Google Scholar 

  23. Wang, Y.-F., Dutzler, R., Rizkallah, P.J., Rosenbusch, J.P. & Schirmer, T. Channel specificity: Structural basis for sugar discrimination and differential flux rates in maltoporin. J. Mol. Biol. 272, 56–63 (1997).

    Article  CAS  Google Scholar 

  24. Meyer, J.E., Hofnung, M. & Schulz, G.E. Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. J. Mol. Biol. 266, 761–75 (1997).

    Article  CAS  Google Scholar 

  25. Schmid, K., Schupfner, M. & Schmitt, R. Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J. Bacteriol. 151, 68–76 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmid, K., Ebner, R., Jahreis, K., Lengeler, J.W. & Titgemeyer, F. A sugar-specific porin, ScrY, is involved in sucrose uptake in enteric bacteria. Mol. Microbiol. 5, 941–950 (1991).

    Article  CAS  Google Scholar 

  27. Hardesty, C., Ferran, C. & DiRienzo, J.M. Plasmid-mediated sucrose metabolism in Escherichia coli: Characterization of scrY, the structural gene for a phosphoenol-pyruvate-dependent sucrose phosphotransferase system outer membrane porin. J. Bacteriol. 173, 449–456 (1991).

    Article  CAS  Google Scholar 

  28. Schülein, K., Andersen, C. & Benz, R. The deletion of 70 amino acids near the N-terminal end of the sucrose-specific porin ScrY causes its functional similarity to LamB in vivo and in vitro. Mol. Microbiol. 17, 757–767 (1995).

    Article  Google Scholar 

  29. Forst, D. et al. Crystallization and preliminary X-ray diffraction analysis of ScrY, a specific bacterial outer membrane porin. J. Mol. Biol. 229, 258–262 (1993).

    Article  CAS  Google Scholar 

  30. Burley, S.K. & Petsko, G.A. Electrostatic interactions in aromatic oligopeptides contribute to protein stability. TIBTECH 7, 354–359 (1989).

    Article  CAS  Google Scholar 

  31. Pebay-Peyroula, E., Garavito, R.M., Rosenbusch, J.P., Zulauf, M. & Timmins, P.A. Detergent structure in tetragonal crystals of OmpF porin. Structure 3, 1051–1059 (1995).

    Article  CAS  Google Scholar 

  32. Schiffer, M., Chang, C.H. & Stevens, F.J. Transport proteins in bacteria: Common themes in their design. Science 258, 936–942 (1992).

    Article  Google Scholar 

  33. Vyas, N.K. Atomic features of protein-carbohydrate interactions. Curr. Op. Struct. Biol. 1, 732–740 (1991).

    Article  CAS  Google Scholar 

  34. Engelsen, S.B., du Penhoat, C.H. & Perez, S. Molecular Relaxation of Sucrose in aqueous Solution. J. Phys. Chem. 99, 13334–13351 (1995).

    Article  CAS  Google Scholar 

  35. Brown, G.M. & Levy, H.A. Further Refinement of the Structure of Sucrose based on Neutron-Diffraction Data. Acta Crystallogr. B29, 790–797 (1973).

    Article  Google Scholar 

  36. Immel, S. & Lichtenthaler, F.W. The Conformation of Sucrose in water: A Molecular Dynamics Approach. Liebigs Ann. 1995, 1925–1937 (1995).

    Article  Google Scholar 

  37. Casset, F. et al. NMR, Molecular Modelling, and Crystallographic Studies of Lentil Lectin-Sucrose Interaction. J. Biol. Chem. 270, 25619–25628 (1995).

    Article  CAS  Google Scholar 

  38. Tormo, J. et al. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 15, 5739–5751 (1996).

    Article  CAS  Google Scholar 

  39. O'Reilly, M., Watson, K.A., Schinzel, R., Palm, D. & Johnson, L.N. Oligosaccharide substrate binding in Escherichia coli maltodextrin phosphorylase. Nature Struct. Biol. 4, 405–412 (1997).

    Article  CAS  Google Scholar 

  40. Davies, G.J. et al. Structure Determination and Refinement of the Humicola inso-lens Endoglucanase V at 1.5 Å Resolution. Acta Crystallogr. D52, 7–17 (1996).

    CAS  Google Scholar 

  41. Ford, L.O., Johnson, L.N., Machin, P.A., Philips, D.C. & Tijan, R., Crystal Structure of a Lysozyme-Tetrasaccharide Lactone Complex. J. Mol. Biol. 88, 349–371 (1974).

    Article  CAS  Google Scholar 

  42. Ng, K.K.-S., Drickamer, K. & Weis, W.I. Structural Analysis of Monosaccharide Recognition by Rat Liver Mannose-binding Protein. J. Biol. Chem. 271, 663–674 (1996).

    Article  CAS  Google Scholar 

  43. Weis, W.I., Drickamer, K. & Hendrickson, W.A. Stucture of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127–134 (1992).

    Article  CAS  Google Scholar 

  44. Qian, M., Haser, R. & Payan, F. Carbohydrate binding sites in a pancreatic α-amylase-substrate complex, derived from X-ray structure analysis at 2.1 Å resolution. Protein Sci. 4, 747–755 (1995).

    Article  CAS  Google Scholar 

  45. Shaanan, B., Lis, H. & Sharon, N. Structure of a Legume Lectin with an Ordered N-linked Carbohydrate in Complex with Lactose. Science 254, 862–866 (1991).

    Article  CAS  Google Scholar 

  46. Francis, G., Brennan, L., Stretton, S. & Ferenci, T. Genetic mapping of starch- and lambda-receptor sites in maltoporin: identification of substitutions causing direct and indirect effects on binding sites by cysteine mutagenesis. Mol. Microbiol. 5, 2293–2301 (1991).

    Article  CAS  Google Scholar 

  47. Benz, R., Francis, G., Nakae, T. & Ferenci, T. Investigation of the selectivity of maltoporin channels using LamB proteins: Mutations changing the maltodextrin binding site. Biochim. Biophys. Acta 1104, 299–307 (1992).

    Article  CAS  Google Scholar 

  48. Meyer, J.E.W. & Schulz, G.E. Energy profile of maltooligosaccharide permeation through maltoporin as derived from the structure and from a statistical analysis of saccharide-protein interactions. Protein Sci. 6, 1084–1091 (1997).

    Article  CAS  Google Scholar 

  49. Jordy, M., Andersen, C., Schülein, K., Ferenci, T. & Benz, R., Constants of Sugar Transport Through Two LamB Mutants of Escherichia coli : Comparison with Wild-type Maltoporin and LamB of Salmonella typhimurium. J. Mol. Biol. 259, 666–678 (1996).

    Article  CAS  Google Scholar 

  50. Adam, G. & Delbrück, M. : Reduction of Dimensionality in Biological Diffusion Processes. in : Structural Chemistry & Molecular Biology 198–215 (eds Rich, A. & Davidson, N.) (Freeman, San Francisco; 1968).

    Google Scholar 

  51. Lupas, A. Coiled coils: New structures and new functions. TIBS 21, 375–382 (1996).

    CAS  PubMed  Google Scholar 

  52. DeLano, W.L. & Brünger, A.T. Helix packing in Proteins: prediction and energetic analysis of dimeric, trimeric, and tetrameric GCN4 coiled coil structures. Proteins: Struct. Funct. Genet. 20, 105–123 (1994).

    Article  CAS  Google Scholar 

  53. Engel, A.M., Cejka, Z., Lupas, A., Lottspeich, F. & Baumeister, W. Isolation and Cloning of Ompα, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima. EMBO J. 11, 4369–4378 (1992).

    Article  CAS  Google Scholar 

  54. Derouiche, R. et al. TolA central domain interacts with E. coli porins. EMBO J. 15, 6408–6415 (1996).

    Article  CAS  Google Scholar 

  55. McLachlan, A.D. Coiled-Coil Structure of Murein Lipoprotein. Biochem. Soc. Transact. 6, 1353–1354 (1978).

    Article  CAS  Google Scholar 

  56. Braun, V., Rotering, H., Ohms, J.-P. & Hagenmaeier, H. Conformational studies on Murein-Lipoprotein from the Outer Membrane of Escherichia coli. Eur. J Biochem. 70, 601–610 (1976).

    Article  CAS  Google Scholar 

  57. Krylov, D., Mikhailenko, I. & Vinson, C. A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J. 13, 2849–2861 (1994).

    Article  CAS  Google Scholar 

  58. Lavigne, P., Sönnichsen, F.D., Kay, C.M. & Hodges, R.S. Interhelical Salt Bridges, Coiled-Coil Stability, and Specificity of Dimerization. Science 271, 1136–1137 (1996).

    Article  CAS  Google Scholar 

  59. Yang, A.S. & Honig, B. Electrostatic effects on protein stability. Curr. Op. Struct. Biol. 2, 40–45 (1992).

    Article  CAS  Google Scholar 

  60. Lumb, K.J. & Kim, P.S. Measurement of Interhelical Electrostatic Interactions in the GCN4 Leucine Zipper. Science 268, 436–439 (1995).

    Article  CAS  Google Scholar 

  61. Schülein, K., Schmid, K. & Benz, R. The sugar-specific outer membrane channel ScrY contains functional characteristics of general diffusion pores and substrate-specific porins. Mol. Microbiol. 5, 2233–2241 (1991).

    Article  Google Scholar 

  62. Kabsch, W. Automatic Processing of Rotation Diffraction Data from Crystals of Initially Unknown Symmetry and Cell Constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  63. Diederichs, K. A comparison of some heavy-atom refinement and phasing programs. CCP4/ESF-EACBM Newsletters on Protein Crystallography 31, 23–30 (1994).

    Google Scholar 

  64. Kleywegt, G.J. Making the most of your search model. CCP4/ESF-EACBM Newsletter on Protein Crystallography 32, 32–36 (1996).

    Google Scholar 

  65. Collaborative Computational Project, Number 4 The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50, 760–763 (1994).

  66. Cowtan, K. ‘dm’: An Automated Procedure for Phase Improvement by Density Modification. CCP4/ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  67. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  68. Brünger, A.T. (1992) X-PLOR Version 3.1. A System for X-ray crystallography and NMR (Yale University Press, New Haven; 1992).

    Google Scholar 

  69. Brünger, A.T., Krukowski, A. & Erickson, J. Slow cooling-protocols for crystallographic refinement by simulated annealing. Acta Crystallogr. A46, 585–593 (1990).

    Article  Google Scholar 

  70. Yeates, T.O. Simple statistics for intensity data from twinned specimens. Acta Crystallogr. A44, 142–144 (1988).

    Article  CAS  Google Scholar 

  71. Gomis-Rüth, F.X. et al. Determination of Hemihedral Twinning and Initial Structural Analysis of Crystals of the Procarboxypeptidase A Ternary Complex. Acta Crystallogr. D51, 819–823 (1995).

    Google Scholar 

  72. Sheldrick, G.M. & Schneider, T.R. SHELXL: High-Resolution Refinement. Meth. Enz. 277, 319–343 (1997).

    Article  CAS  Google Scholar 

  73. McLachlan, A.D. Gene duplication in the structural evolution of chymotrypsin. J. Mol. Biol. 128, 49–79 (1979).

    Article  CAS  Google Scholar 

  74. Carson, M. Ribbon Models of Macromolecules, J. Mol. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  75. Kraulis, P. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  76. Merrit, E.A. & Bacon, D.J. Raster3D: Photorealistic Molecular Graphics. Meth. Enz. 277, 505–524 (1997).

    Article  Google Scholar 

  77. Kabsch, W. & Sanders, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  78. Nicholls, A., Bharadwaj, R. & Honig, B. GRASP Graphical Representation and Analysis of Surface Properties. Biophys. J. 64, A166 (1993).

    Google Scholar 

  79. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Welte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forst, D., Welte, W., Wacker, T. et al. Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Mol Biol 5, 37–46 (1998). https://doi.org/10.1038/nsb0198-37

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0198-37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing