Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY

Abstract

Bacterial adaptation to the environment is accomplished through the coordinated activation of specific sensory receptors and signal processing proteins. Among the best characterized of these pathways are those which employ the two-component paradigm. In these systems, signal transmission is mediated by Mg2+-dependent phospho-relay reactions between histidine auto-kinases and phosphoaccepting receiver domains in response-regulator proteins. Although this mechanism of activation is common to all response-regulators, detrimental cross-talk between different two-component pathways within the same cell is minimized through the use of specific recognition domains. Here, we report the crystal structure, at 2.95 Å resolution, of the response regulator of bacterial chemotaxis, CheY, bound to the recognition domain from its cognate histidine kinase, CheA. The structure suggests that molecular recognition, in this low affinity complex (KD = 2 μM), may also contribute to the mechanism of CheY activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Swanson, R.V., Schuster, S.C. & Simon, M.I. Biochemistry, 32, 7623–7629 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Morrison, T.B. & Parkinson, J.S. Proc. Nat. Acad. Sci. USA 91, 5485–5489 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou, H., McEvoy, M.M., Swanson, R.V., Simon, M.I. & Dahlquist, F.W. Biochemistry 35, 433–443 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, H., Lowry, D.F., Swanson, R.V., Simon, M.I. & Dahlquist, F.W. Biochemistry 34, 13858–13870 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. McEvoy, M.M. et al. Biolchemistry 34, 13871–13880 (1995).

    Article  CAS  Google Scholar 

  6. Surette, M.G. et al. J. Biol. Chem. 271, 939–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Levit, M., Liu, Y., Surette, M. & Stock, J. J. Biol. Chem. 271, 32057–32063 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. McEvoy, M.M., de la Cruz, A.F.A. & Dahlquist, F.W. Nature Struct. Biol. 4, 9 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. McEvoy, M.M., Muhandiram, D.R., Kay, L.E. & Dahlquist, F.W. Biochemistry 35, 5633–5640 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Chothia, C., Janin, J. Nature 256, 705–708 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Li, J., Swanson, R.V., Simon, M.I. & Weis, R.M. Biochemistry 34, 14626–14636 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Swanson, R.V. et al. Nature Struct. Biol. 2, 906–910 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Volz, K. Biochemistry 32, 11741–11753 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Stock, J.B., Ninfa, A.J. & Stock, A.M. Microbiol. Rev. 53, 450–490 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Parkinson, J.S. & Kofoid, E.C. Annu. Rev. Genet. 26, 71–112 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Bischoff, D.S., Bourret, R.B., Kirsch, M.L. & Ordal, G.W. Biochemistry 32, 9256–9261 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Kuo, S.C. & Koshland, D.E. Jr. J. Bact. 169, 1307–1314 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Volz, K. & Matsumura, P. J Biol Chem 266, 15511–15519 (1991).

    CAS  PubMed  Google Scholar 

  19. Stock, A.M. et al. Biochemistry 32, 13375–13380 (19

  20. Moy, F.J. et al. Biochemistry 33, 10731–10742 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Ganguli, S., Wang, H., Matsumura, P. & Volz, K. J. Biol. Chem. 270, 17386–17393 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, X., Rebello, J., Matsumura, P. & Voltz, K. J. Biol. Chem. 272, 5000–5006 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Shukla, D. & Matsumura, P. J. Biol. Chem. 270, 24414–24419 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Garzon, A. & Parkinson, J.S. J. Bact. 178, 6752–6758 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amsler, C.D. & Matsumura, P. Chemotactic signal transduction in Escherischia coli and Salmonella typhimurium in Two-component signal transduction (eds Hoch, J. A. & Silhavy, T. J.) 89–99 (American Society for Microbiology, Washington, DC-20005; 1995).

    Google Scholar 

  26. Leslie, A.G.W. in Computational Aspects of Protein Crystal Data Analysis, Proceedings of the Daresbury Study Weekend (eds Helliwell, J.R., Machin, P.A. & Papiz, M.Z.) 39–50 (SERC, Daresbury Laboratory, Warrington,UK; 1987).

    Google Scholar 

  27. Collaborative Computational Project 4. Acta Crystallagr. D 50, 760–763 (1994).

  28. La Fortelle, E. de & Bricogne, G. Maximum-Likelihood Heavy-Atom Parameter Refinement in the MIR and MAD Methods in Methods in Enzymology, Macromolecular Crystallography, Vol. 276 (eds Sweet, R.M. & Carter, C. W. Jr.) 472–494 (Academic Press New York; 1997).

    Google Scholar 

  29. Cowtan, K. ‘DM’ an automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography, Vol. 31 (eds Bailey, S. & Wilson, K.) 34–38 (Daresbury Laboratory, Hamburg,–Germany; 1994).

    Google Scholar 

  30. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  31. Brünger, A.T. X-PLOR Version 3.1: A System for X-ray Crystallography and NMR (Yale University Press, New Haven, CT; 1992).

    Google Scholar 

  32. Brünger, A.T. Nature 355, 472–475 (1992).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Samama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, M., Chinardet, N., Mourey, L. et al. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat Struct Mol Biol 5, 25–29 (1998). https://doi.org/10.1038/nsb0198-25

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0198-25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing