Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase

Abstract

The crystal structure of E. coli asparagine synthetase has been determined by X-ray diffraction analysis at 2.5 Å resolution. The overall structure of the enzyme is remarkably similar to that of the catalytic domain of yeast aspartyl-tRNA synthetase despite low sequence similarity. These enzymes have a common reaction mechanism that implies the formation of an aminoacyl-adenylate intermediate. The active site architecture and most of the catalytic residues are also conserved in both enzymes. These proteins have probably evolved from a common ancestor even though their sequence similarities are small. The functional and structural similarities of both enzymes suggest that new enzymatic activites would generally follow the recruitment of a protein catalyzing a similiar chemical reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schimmel, P., Annu. Rev. Biochem. 56, 125–158 (1987).

    Article  CAS  Google Scholar 

  2. Meister, A. in The Enzymes (ed. Boyer, P.D.) 561–580 (Academic Press, New York; 1974).

    Google Scholar 

  3. Cusack, S. Nature Struct. Biol. 2, 824–831 (1995).

    Article  CAS  Google Scholar 

  4. Ruff, M., et al. Science 252, 1682–1689 (1991).

    Article  CAS  Google Scholar 

  5. Gatti, D.L. & Tzagoloff, A. J. Mol. Biol. 218, 557–568 (1991).

    Article  CAS  Google Scholar 

  6. Hinchman, S.K., Henikoff, S. & Schuster, S.M.J. Biol. Chem. 267, 144–149 (1992).

    CAS  Google Scholar 

  7. Cedar, H. & Schwartz, J.H. J. Biol. Chem. 244, 4112–4121 (1969).

    CAS  PubMed  Google Scholar 

  8. Cedar, H. & Schwartz, J.H. J. Biol. Chem. 244, 4122–4127 (1969).

    CAS  PubMed  Google Scholar 

  9. Yamaguchi, H., et al. J. Mol. Biol. 299, 1083–1100 (1993).

    Article  Google Scholar 

  10. Almassy, R.J., Janson, C.A., Hamlin, R., Xuong, N.-H. & Eisenberg, D. Nature 325, 304–309 (1986).

    Article  Google Scholar 

  11. Arnez, J.G. et al. EMBO J. 14, 4143–4155 (1995).

    Article  CAS  Google Scholar 

  12. Eriani, G. et al. Proc. Natl. Acad. Sci. 90, 10816–10820 (1993).

    Article  CAS  Google Scholar 

  13. Eriani, G., Deralue, M., Poch, O., Gangloff, J. & Moras, D. Nature 347, 203–206 (1990).

    Article  CAS  Google Scholar 

  14. Cavarelli, J., et al. EMBO J. 13, 327–337 (1994).

    Article  CAS  Google Scholar 

  15. Poterszman, A., Delarue, M., Thierry, J.-C. & Moras, D. J. Mol. Biol. 244, 158–167 (1994).

    Article  CAS  Google Scholar 

  16. Deralue, M., et al. EMBO J. 13, 3219–3229 (1994).

    Article  Google Scholar 

  17. Martin, F., et al. J. Mol. Biol. 234, 965–974 (1993).

    Article  CAS  Google Scholar 

  18. Imanaka, T., Lee, S., Takagi, M. & Fujiwara, S. Gene 164, –1995 (1995).

    Article  CAS  Google Scholar 

  19. Neidhart, D.J., Fenyon, G.L., Gerlt, J.A. & Petsko, G.A. Nature 347, 692–694 (1990).

    Article  CAS  Google Scholar 

  20. Nakatsu, T., Kato, H. & Oda, J. Acta Crystallogr. D 52, 604–606 (1996).

    Google Scholar 

  21. Matthews, B.W. & Rossman, M.G. Meth. Enzymol. 115, 397–420 (1985).

    Article  CAS  Google Scholar 

  22. Sato, M., et al. J. Appl. Crystallogar. 25, 348–357 (1992).

    Article  CAS  Google Scholar 

  23. Furey, W. & Swaminathan, S., Meth. Enzymol. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

  24. Wang, B.-C. Meth. Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  25. Bricogne, G. Acta Crystallogr. A 32, 832–847 (1976).

    Article  Google Scholar 

  26. Jones, T.A. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  27. Br¨nger, A.T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  Google Scholar 

  28. Laskowski, R.A. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  29. Klraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun'ichi Oda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatsu, T., Kato, H. & Oda, J. Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase. Nat Struct Mol Biol 5, 15–19 (1998). https://doi.org/10.1038/nsb0198-15

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0198-15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing