Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions

Abstract

The X-ray crystal structure of recombinant human monocyte chemoattractant protein (MCP-1) has been solved in two crystal forms. One crystal form (P), refined to 1.85 Å resolution, contains a dimer in the asymmetric unit, while the other (I) contains a monomer and was refined at 2.4 Å. Although both crystal forms grow together in the same droplet, the respective quaternary structures of the protein differ dramatically. In addition, both X-ray structures differ to a similar extent from the solution structure of MCP-1. Such extent of variability of quaternary structures is unprecedented. In the crystal structures, the well-ordered N termini of MCP-1 form 310-helices. Comparison of the three MCP-1 structures revealed a direct correlation between the main-chain conformation of the first two cysteine residues and the quaternary arrangements. These data can be used to explain the structural basis for the assignment of residues responsible for biological activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, M.D. & Krangel, M.S. Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit. Rev. Immunol. 12, 17–46 (1992).

    CAS  PubMed  Google Scholar 

  2. Gurney, M.E. Chemokines take center stage in inflammatory ills. Science 272, 954–956 (1996).

    Article  Google Scholar 

  3. Rollins, B.J. Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in inflammatory disease. Molec. Med. Today 1, 98–204 (1996).

    Google Scholar 

  4. Seine, Y. et al. Expression of leukocyte chemotactic cytokines in myocardial tissue. Cytokine. 7, 301–304 (1995).

    Article  Google Scholar 

  5. Schall, T.J. & Bacon, K.B. Chemokines, leukocyte trafficking, and inflammation. Curr. Opin. Immunol. 6, 865–873 (1994).

    Article  CAS  Google Scholar 

  6. Kelner, G.S. et al. Lymphotactin: a cytokine that represents a new class of chemokine. Science 266, 1395–1399 (1994).

    Article  CAS  Google Scholar 

  7. Wells, T.N.C., Proudfoot, A.E.I., Power, C.A. & Marsh, M. Chemokine receptors - the new frontier for AIDS research. Chemistry & Biology 3, 603–609 (1996).

    Article  CAS  Google Scholar 

  8. Paolini, J.F., Willard, D., Consler, T., Luther, M. & Krangel, M.S. The chemokines IL-8, monocyte chemoattractant protein-1, and I-309 are monomers at physiologically relevant concentrations. J. Immunol. 153, 2704–2717 (1994).

    CAS  PubMed  Google Scholar 

  9. Zhang, Y. & Rollins, B.J. A dominant negative inhibitor indicates that a monocyte chemoattractant protein 1 functions as a dimer. Mol. Cell. Biol. 15, 4851–4855 (1995).

    Article  CAS  Google Scholar 

  10. Gong, J.H. & Clark-Lewis, I. Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J. Exp. Med. 181, 631–640 (1995).

    Article  CAS  Google Scholar 

  11. Besemer, J., Schnitzel, W., Monschein, U. & Ryffel, B. Cross-linking of human neutrophil surface proteins to iodinated interleukin 8 or neutrophil activating peptide-2 results in at least four separable proteins. Cytokine. 5, 512–519 (1993).

    Article  CAS  Google Scholar 

  12. Mayo, K.H. & Chen, M.J. Human platelet factor 4 monomer-dimer-tetramer equilibria investigated by 1H NMR spectroscopy. Biochemistry 28, 9469–9478 (1989).

    Article  CAS  Google Scholar 

  13. Rajarathnam, K. et al. Neutrophil activation by monomeric interleukin-8. Science 264, 90–92 (1994).

    Article  CAS  Google Scholar 

  14. Schnitzel, W., Monschein, U. & Besemer, J. Monomer-dimer equilibria of interleukin-8 and neutrophil-activating peptide 2. Evidence for IL-8 binding as a dimer and oligomer to IL-8 receptor B. J. Leukoc. Biol. 55, 763–770 (1994).

    Article  CAS  Google Scholar 

  15. St. Charles, R., Walz, D.A. & Edwards, B.F. The three-dimensional structure of bovine platelet factor 4 at 3.0 Å resolution. J. Biol. Chem. 264, 2092–2099 (1989).

    Google Scholar 

  16. Zhang, X., Chen, L., Bancroft, D.P., Lai, C.K. & Maione, T.E. Crystal structure of recombinant human platelet factor 4. Biochemistry 33, 8361–8366 (1994).

    Article  CAS  Google Scholar 

  17. Clore, G.M., Appella, E., Yamada, M., Matsushima, K. & Gronenborn, A.M. Three-dimensional structure of interleukin 8 in solution. Biochemistry 29, 1689–1696 (1990).

    Article  CAS  Google Scholar 

  18. Baldwin, E.T. et al. Crystal structure of interleukin-8: symbiosis of NMR and crystallography. Proc. Natl. Acad. Sci. USA 88, 502–506 (1991).

    Article  CAS  Google Scholar 

  19. Malkowski, M.G., Wu, J., Lazar, J.B., Johnson, P.M. & Edwards, B.F.P. The crystal structure of recombinant human neutrophil-activating peptide-2 (M6L) at 1.9 Å resolution. J. Biol. Chem. 270, 7077–7087 (1995).

    Article  CAS  Google Scholar 

  20. Lodi, P.J. et al. High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science 263, 1762–1767 (1994).

    Article  CAS  Google Scholar 

  21. Fairbrother, W.J., Reilly, D., Colby, T.J., Hesselgesser, J. & Horuk, R. The solution structure of melanoma growth stimulating activity. J. Mol. Biol. 242, 252–270 (1994).

    Article  CAS  Google Scholar 

  22. Chung, C.W., Cooke, R.M., Proudfoot, A.E. & Wells, T.N. The three-dimensional solution structure of RANTES. Biochemistry 34, 9307–9314 (1995).

    Article  CAS  Google Scholar 

  23. Skelton, N.J., Aspiras, F., Ogez, J. & Schall, T.J. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry 34, 5329–5342 (1995).

    Article  CAS  Google Scholar 

  24. Handel, T.M. & Domaille, P.J. Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry 35, 6569–6584 (1996).

    Article  CAS  Google Scholar 

  25. Clore, G.M. & Gronenborn, A.M. Comparison of the solution nuclear magnetic resonance and crystal structures of interleukin-8. Possible implications for the mechanism of receptor binding. J. Mol. Biol. 217, 611–620 (1991).

    Article  CAS  Google Scholar 

  26. Zhang, Y.J., Rutledge, B.J. & Rollins, B.J. Structure/activity analysis of human monocyte chemoattractant protein-1 (MCP-1) by mutagenesis. Identification of a mutated protein that inhibits MCP-1-mediated monocyte chemotaxis. J. Biol. Chem. 269, 15918–15924 (1994).

    CAS  PubMed  Google Scholar 

  27. Weber, M., Uguccioni, M., Baggiolini, M., Clark-Lewis, I. & Dahinden, C.A. Deletion of the NH2-terminal residue converts monocyte chemotactic protein 1 from an activator of basophil mediator release to an eosinophil chemoattractant. J. Exp. Med 183, 681–685 (1996).

    Article  CAS  Google Scholar 

  28. Beall, C.J., Mahajan, S., Kuhn, D.E. & Kolattukudy, P.E. Site-directed mutagenesis of monocyte chemoattractant protein-1 identifies two regions of the polypeptide essential for biological activity. Biochem. J. 313, 633–640 (1996).

    Article  CAS  Google Scholar 

  29. Maclean, J., Isaacs, N.W. & Graham, G.J. Crystallographic studies of mutants of the chemokine macrophage inflammatory protein. International Union of Crystallography XVII Congress and General Assembly. C–222 (1996).

  30. Beall, C.J., Mahajan, S. & Kolattukudy, P.E. Conversion of monocyte chemoattractant protein-1 into a neutrophile attractant by substitution of two amino acids. J. Biol. Chem. 267, 3455–3459 (1992).

    CAS  PubMed  Google Scholar 

  31. Covell, D.G., Smythers, G.W., Gronenborn, A.M. & Clore, G.M. Analysis of hydrophobicity in the alpha and beta chemokine families and its relevance to dimerization. Protein Sci. 3, 2064–2072 (1994).

    Article  CAS  Google Scholar 

  32. Wlodawer, A., Deisenhofer, J. & Huber, R. Comparison of two highly refined structures of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 193, 145–156 (1987).

    Article  CAS  Google Scholar 

  33. Faber, H.R. & Matthews, B.W. A mutant T4 lysozyme displays five different crystal conformations. Nature 348, 263–266 (1990).

    Article  CAS  Google Scholar 

  34. Huang, D.B. et al. Comparison of crystal structures of two homologous proteins: structural origin of altered domain interactions in immunoglobulin light-chain dimers. Biochemistry 33, 14848–14857 (1994).

    Article  CAS  Google Scholar 

  35. Murray, A.J., Lewis, S.J., Barclay, A.N. & Brady, R.L. One sequence, two folds: A metastable structure of CD2. Proc. Natl. Acad. Sci. USA 92, 7337–7341 (1995).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. in An Oscillation Data Processing Suite for Macromolecular Crystallography (Yale University, New Haven, 1992).

    Google Scholar 

  37. CCP4:SERC Collaborative Computing Project No.4. (Warrington, UK, 1979).

  38. Brünger, A. X-PLOR Version 3.1: A System for X-Ray Crystallography and NMR (Yale University Press, New Haven, 1992).

    Google Scholar 

  39. Jones, T.A. Interactive computer graphics: FRODO. Methods Enzymol. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  40. Jones, T.A., Zou, J.-Y. & Cowan, S.W. Improved methods for building protein models in electron density maps and the location of errors in these methods. Acta Cryst. A 47, 110–119 (1991).

    Article  Google Scholar 

  41. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  Google Scholar 

  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  43. Hutchinson, E.G. & Thornton, J.M. PROMOTIF - A program to identify and analyze structural motifs in proteins. Protein Sci. 5, 212–220 (1996).

    Article  CAS  Google Scholar 

  44. Satow, Y., Cohen, G.H., Padlan, E.A. & Davies, D.R. Phosphocholine binding immunoglobulin Fab McPC603: An X-ray diffraction study at 2.7 Å. J. Mol. Biol. 190, 593–604 (1986).

    Article  CAS  Google Scholar 

  45. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubkowski, J., Bujacz, G., Boqué, L. et al. The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Mol Biol 4, 64–69 (1997). https://doi.org/10.1038/nsb0197-64

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0197-64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing