Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the structure of a non-native state of staphylococcal nuclease

Abstract

Non-native states of proteins populated at extremes of pH, or by mutation or truncation of the protein sequence, are thought to be equilibrium models for kinetic intermediates on the folding pathway. While the global physical properties of these molecules have been well characterized, analysis of their structure by NMR spectroscopy has proven difficult. Here we report the use of a new chemical cleavage technique, based on reactive oxygen species, to map the backbone fold of a truncated form of staphylococcal nuclease in a non-native state. The fragment adopts a native-like fold, however the technique also reveals regions of non-native structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kim, P.S. & Baldwin, R.L Intermediates in the folding reaction of small proteins. A. Rev. Biochem. 59, 631–660 (1990).

    CAS  Google Scholar 

  2. Matthews, C.R. Pathways of protein folding. A. Rev. Biochem. 62, 653–683 (1993).

    CAS  Google Scholar 

  3. Ptitsyn, O. in Protein Folding (ed. Creighton, T.E.) 243–300 (New York, W.H. Freeman and Company, 1992).

    Google Scholar 

  4. Buck, M., Radford, S.E. & Dobson, C.M. Amide hydrogen exchange in a highly denatured state. J. molec. Biol. 237, 247–254 (1994).

    CAS  PubMed  Google Scholar 

  5. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig a-lactalbumin. Biochemistry 28, 7–13 (1989).

    CAS  PubMed  Google Scholar 

  6. Radford, S.E., Buck, M., Topping, K.D., Dobson, C.M. & Evans, P.A. Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins 14, 237–248 (1992).

    CAS  PubMed  Google Scholar 

  7. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544–1548 (1990).

    CAS  PubMed  Google Scholar 

  8. Chyan, C.L., Wormald, C., Dobson, C.M., Evans, P.A. & Baum, J. Structure and stability of a molten globule state of guinea pig a-lactalbumin: a hydrogen exchange study. Biochemistry 32, 5681–5691 (1993).

    CAS  PubMed  Google Scholar 

  9. Koide, S., Dyson, H.J. & Wright, P.E. Characterization of a folding intermediate of apoplastocyanin trapped by proline isomerization. Biochemistry 32, 12299–12310 (1993).

    CAS  PubMed  Google Scholar 

  10. Englander, S.W. & Mayne, L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. A Rev. biophys. biomol. Struct. 21, 243–265 (1992).

    CAS  Google Scholar 

  11. Baldwin, R.L. Pulsed H/D-exchange studies of folding intermediates. Curr. Opin. struct. Biol. 3, 84–91 (1993).

    CAS  Google Scholar 

  12. Jeng, M.F., Englander, S.W., Elove, G.A., Wand, A.J. & Roder, H. Structural description of acid denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 29, 10433–10437 (1990).

    CAS  PubMed  Google Scholar 

  13. Alexandrescu, A.T., Evans, P.A., Pitkeathly, M., Baum, J. & Dobson, C.M. Structure and dynamic of the molten globule state of guinea pig a-lactalbumin: a two-dimensional NMR study. Biochemistry 32, 1707–1718 (1993).

    CAS  PubMed  Google Scholar 

  14. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    CAS  PubMed  Google Scholar 

  15. Ptitsyn, O.B. & Semisotnov, G.V. in Conformations and forces in protein folding (ed. Nail, B.T. & Dill, K.A.) 155–168 (American Association for the Advancement of Science, Washington, D. C. 1991).

  16. Karplus, M. & Shakhnovich, E. in Protein Folding (ed. Creighton, T. E.) 127–195 (New York, W. H. Freeman and Company, 1992).

  17. Peng, Z.Y & Kim, P.S. A protein dissection study of a molten globule. Biochemistry 33, 2136–2141 (1994).

    CAS  PubMed  Google Scholar 

  18. Lattman, E.E., Fiebig, K.M. & Dill, K.A. Modeling compact denatured states of proteins. Biochemistry 33, 6158–6166 (1994)

    CAS  PubMed  Google Scholar 

  19. Wagner, G., Hyberts, S.G. & Havel, T.F. NMR structure determination in solution: a critique and comparison with x-ray crystallography. A. Rev. biophys. biomolec. Struct 21, 167–198 (1992).

    CAS  Google Scholar 

  20. Dobson, CM., Hanley, C, Radford, S.E., Baum, J. & Evans, P.A. in Conformations and forces in protein folding (ed. Nall, B.T. & Dill, K.A.) 175–181 (American Association for the Advancement of Science, Washington, D.C, 1991).

    Google Scholar 

  21. Ermácora, M.R., Delfino, J.M., Cuenoud, B., Schepartz, A. & Fox, R.O. Conformation-dependent cleavage of staphylococcal nuclease with a disulfide-linked iron chelate. Proc. natn. Acad. Sci. U.S.A. 89, 6383–6387 (1992).

    Google Scholar 

  22. Platis, I.E., Ermácora, M.R. & Fox, R.O. Oxidative polypeptide cleavage mediated by EDTA-Fe covalently linked to cysteine residues. Biochemistry 32, 12761–12767 (1993).

    CAS  PubMed  Google Scholar 

  23. Ermácora, M.R., Ledman, D.W., Hellinga, H.W., Hsu, G.W. & Fox, R.O. Mapping staphylococcal nuclease conformation using an EDTA-Fe derivative attached to genetically engineered cysteine residues. Biochemistry 33, 13625–13641 (1994).

    PubMed  Google Scholar 

  24. Shortle, D. & Meeker, A.K. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation. Proteins 1, 81–89 (1986).

    CAS  PubMed  Google Scholar 

  25. Carra, J.H. & Privalov, P.L Energetics of denaturation and m values of staphylococcal nuclease mutants. Biochemistry 34, 2034–2041 (1995).

    CAS  PubMed  Google Scholar 

  26. Wynn, R., Anderson, C.L., Richards, F.M. & Fox, R.O. Interactions in nonnative and truncated forms of staphylococcal nuclease as indicated by mutational free energy changes. Protein Sci. 4, 1815–1823 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shortle, D. & Meeker, A.K. Residual structure in large fragments of staphylococcal nuclease: effects of amino acid substitutions. Biochemistry 28, 936–944 (1989).

    CAS  PubMed  Google Scholar 

  28. Flanagan, J.M., Kataoka, M., Shortle, D. & Engelman, D.M. Truncated staphylococcal nuclease is compact but disordered. Proc. natn. Acad. Sci. U.S.A. 89, 748–752 (1992).

    CAS  Google Scholar 

  29. Griko, Y.V., Gittis, A., Lattman, E.E. & Privalov, P.L. Residual structure in a staphylococcal nuclease fragment. Is it a molten globule and is its unfolding a first-order phase transition? J. molec. Biol. 243, 93–99 (1994).

    CAS  PubMed  Google Scholar 

  30. Flanagan, J.M., Kataoka, M., Fujisawa, T. & Engelman, D.M. Mutations can cause large changes in the conformation of a denatured protein Biochemistry 32, 10359–10370 (1993).

    CAS  PubMed  Google Scholar 

  31. Nakano, T., Antonino, LC, Fox, R.O. & Fink, A.L Effect of proline mutation on the stability and kinetics of folding of staphylococcal nuclease. Biochemistry 32, 2534–2541 (1993).

    CAS  PubMed  Google Scholar 

  32. Chen, H.M., Markin, V.S. & Tsong, T.Y. pH induced folding/unfolding of staphylococcal nuclease: determination of kinetic parameters by the sequential-jump method. Biochemistry 31, 1483–1491 (1992).

    CAS  PubMed  Google Scholar 

  33. Evans, P.A., Kautz, R.A., Fox, R.O. & Dobson, CM. A magnetic transfer resonance study of the folding of staphylococcal nuclease. Biochemistry 28, 362–370 (1989).

    CAS  PubMed  Google Scholar 

  34. Alexandrescu, A.T., Ulrich, E.L & Markley, J.L Hydrogen-1 NMR evidence for three interconverting forms of staphylococcal nuclease: effects of mutations and solution conditions on their distribution. Biochemistry 28, 204–211 (1989).

    CAS  PubMed  Google Scholar 

  35. Hodel, A., Kautz, R.A., Jacobs, M.D. & Fox, R.O. Stress and strain in staphylococcal nuclease. Prot Sci. 2, 838–850 (1993).

    CAS  Google Scholar 

  36. Shortle, D. & Abeygunawardana, C. NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease. Structure 1, 121–134 (1993).

    CAS  PubMed  Google Scholar 

  37. Alexandrescu, A.T., Gittis, A.G., Abeygunawardana, C. & Shortle, D. NMR structure of a stable OB fold sub-domain isolated from staphylococcal nuclease. J. molec. Biol. 250, 134–143 (1995).

    CAS  PubMed  Google Scholar 

  38. Alexandrescu, A.T., Abeygunawardana, C. & Shortle, D. Structure and dynamic of a denatured 131 residue fragment of staphylococcal nuclease: a heteronuclear study. Biochemistry 33, 1063–1072 (1994).

    CAS  PubMed  Google Scholar 

  39. Hynes, T.R., Kautz, R.A., Goodman, M.A., Gill, J.F. & Fox, R.O. Transfer of a β-turn structure to a new protein context. Nature 339, 73–76 (1989).

    CAS  PubMed  Google Scholar 

  40. Penefsky, H.S. A centrifuged-column procedure for the measurement of ligand binding by beef heart F1. Meths. Enzymol. 56, 527–530 (1979).

    CAS  Google Scholar 

  41. Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    CAS  PubMed  Google Scholar 

  42. Kratzin, H.D., Wiltfang, J., Karas, M., Neuhoff, V. & Hilschmann, N. Gas-phase sequencing after electroblotting on polyvinylidene difluoride membranes assigns correct molecular weights to myoglobin molecular weight markers. Analyt. Biochem. 183, 18 (1989).

    Google Scholar 

  43. Matsudaira, P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. biol. Chem. 262, 10035–10038 (1987).

    CAS  PubMed  Google Scholar 

  44. Uversky, V.N. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 32, 13288–13298 (1993).

    CAS  PubMed  Google Scholar 

  45. Miller, W.G. & Goebel, C.V. Dimensions of protein random coils. Biochemistry 7, 3925–3935 (1968).

    CAS  PubMed  Google Scholar 

  46. Hynes, T.R. & Fox, R.O. The crystal structure of staphylococcal nuclease refined at 1.7Å resolution. Proteins 10, 92–105 (1991).

    CAS  PubMed  Google Scholar 

  47. Brünger, A.T. A system for X-ray crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermácora, M., Ledman, D. & Fox, R. Mapping the structure of a non-native state of staphylococcal nuclease. Nat Struct Mol Biol 3, 59–66 (1996). https://doi.org/10.1038/nsb0196-59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0196-59

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing