Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase

Abstract

The crystal structure of the phosphoglycerate dehydrogenase from Eschehchia coli is unique among dehydrogenases. It consists of three clearly separate domains connected by flexible hinges. The tetramer has approximate 222 symmetry with the principal contacts between the subunits forming between either the nucleotide binding domains or the regulatory domains. Two slightly different subunit conformations are present which vary only in the orientations of the domains. There is a hinge-like arrangement near the active site cleft and the serine effector site is provided by the regulatory domain of each of two subunits. Interdomain flexibility may play a key role in both catalysis and allosteric inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions: A plausible model, J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  2. Ichihara, A. & Greenberg, D.M. Further studies on the pathway of serine formation from carbohydrate, J. biol. Chem. 224, 331–340 (1957).

    CAS  PubMed  Google Scholar 

  3. Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli, J. biol. Chem. 238, 3934–3944 (1963).

    CAS  PubMed  Google Scholar 

  4. Willis, J.E. & Sallach, H.J. The occurence of D-3-phosphoglycerate dehydrogenase in animal tissues, Biochim. biophys. Acta 81, 39–54 (1964).

    CAS  Google Scholar 

  5. Slaughter, J.C. & Davies, D.D. Inhibition of 3-phosphoglycerate dehydrogenase by L-serine, Biochem J. 109, 749–755 (1968).

    Article  CAS  Google Scholar 

  6. Tobey, K.L. & Grant, G.A. The nucleotide sequence of the serA gene of Escherichia coli and the amino acid sequence of the encoded protein, D-3-phosphoglycerate dehydrogenase, J. biol. Chem. 261, 12179–12183 (1986).

    CAS  PubMed  Google Scholar 

  7. Grant, G.A. A new family of 2-hydroxyacid dehydrogenases, Biochem. biophys. Res. Comm. 165, 1371–1374 (1989).

    Article  CAS  Google Scholar 

  8. Goldberg, J.D., Yoshida, T. & Brick, P. Crystal structure of a NAD-dependent D-Glycerate dehydrogenase at 2.4 Å resolution, J. molec. Biol. 236, 1123–1140 (1994).

    Article  CAS  Google Scholar 

  9. Lamzin, V.S., Dauter, Z., Popov, V.O., Harutyunyan, E.H. & Wilson, K.S. High resolution structures of holo and apo formate dehydrogenase, J. molec. Biol. 236, 759–785 (1994).

    Article  CAS  Google Scholar 

  10. Sugimoto, E. & Pizer, L.I. The mechanism of end product inhibition of serine biosynthesis: I. purification and kinetics of phosphoglycerate dehydrogenase, J. biol. Chem. 243, 2081–2089 (1968).

    CAS  PubMed  Google Scholar 

  11. Sugimoto, E. & Pizer, L.I. The mechanism of end product inhibition of serine biosynthesis: II. optical studies of phosphoglycerate dehydrogenase, J. biol. Chem. 243, 2090–2098 (1968).

    CAS  PubMed  Google Scholar 

  12. Dubrow, R. & Pizer, L.I. Transient kinetic studies on the allosteric transition of phosphoglycerate dehydrogenase, J. biol. Chem. 252, 1527–1538 (1977).

    CAS  PubMed  Google Scholar 

  13. Dubrow, R. & Pizer, L.I. Transient kinetic and deuterium isotope effect studies on the catalytic mechanism of phosphoglycerate dehydrogenase, J. biol. Chem. 252, 1539–1551 (1977).

    CAS  PubMed  Google Scholar 

  14. Birktoft, J.J. & Banaszak, L.J. The presence of a histidine-aspartic acid pair in the active site of 2-hydroxyacid dehydrogenases, J. biol. Chem. 258, 472–482 (1983).

    CAS  PubMed  Google Scholar 

  15. Janin, J. Shared structural motif in proteins Nature 365, 21 1993.

    Article  CAS  Google Scholar 

  16. Dumas, C et al., X-ray structure of nucleoside diphosphate kinase, EMBO J. 11, 3203–3208 (1992).

    Article  CAS  Google Scholar 

  17. Kosman, R.P., Gouaux, J.E. & Lipscomb, W.N. Crystal structure of CTP-ligated T state aspartate transcarbamoylase at 2.5 Å resolution: implications for ATCase mutants and the mechanism of negative cooperativity, Proteins 15, 147–176 (1993).

    Article  CAS  Google Scholar 

  18. Schuller, D.J., Fetter, C.H., Banaszak, L.J. & Grant, G.A. Enhanced expression of the Escherichia coli serA gene in a plasmid vector: purification, crystallization, and preliminary X-ray data of D-3-phosphoglycerate dehydrogenase, J. biol. Chem. 264, 2645–2648 (1989).

    CAS  PubMed  Google Scholar 

  19. Howard, A.J., Gilliland, G.L., Finzel, B.C., Poulos, T.L., Ohlendorf, D.H. & Salemme, F.R. The use of an imaging proportional counter in macromolecular crystallography J. Appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  20. Terwilliger, T.C. & Eisenberg, D. Unbiased three-dimensional refinement of heavy-atom parameters by correlation of origin-removed Patterson functions, Acta crystallogr. A39, 813–817 (1983).

    Article  CAS  Google Scholar 

  21. Terwilliger, T.C. Kim, S.-H. Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function, Acta Crystallogr. A43, 1–5 (1987).

    Article  CAS  Google Scholar 

  22. Cowtan, K.D. & Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints, Acta crystallogr. D49, 148–157 (1993).

    CAS  Google Scholar 

  23. Levitt, D.G. & Banaszak, L.J. A new routine for thinning, editing and fitting MIR maps using real space molecular dynamics, J. appl. Crystallogr. 26, 736–745 (1993).

    Article  CAS  Google Scholar 

  24. Brunger, A.T., Kuriyan, J. & Karplus, M. R-factor refinement by molecular dynamics, Science 235, 458–460 (1987).

    Article  CAS  Google Scholar 

  25. Bio-Graphics, Turbo-Frodo (Marseille 1992).

  26. Jones, T.A. Interactive computer graphics: FRODO in Meths Enzymol. 115, 157–171 (1985).

    Google Scholar 

  27. Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography, Acta crystallogr D50, 760–763 (1994)

  28. Lee, B. & Richards, F.M. The interpretation of protein structures: Estimation of static accessibility, J. molec. Biol. 55, 379–400 (1971)

    Article  CAS  Google Scholar 

  29. Read, R. Improved fourier coefficients for maps using phases from partial structures with errors, Acta crystallogr. A42, 140–149 (1986)

    Article  CAS  Google Scholar 

  30. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  31. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures, J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  32. Evans, S.V. SETOR: Hardware-lighted three-dimensional solid model representations of macromolecules J. molec. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, D., Grant, G. & Banaszak, L. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Mol Biol 2, 69–76 (1995). https://doi.org/10.1038/nsb0195-69

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0195-69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing