Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of an RNA double helix including uracil-uracil base pairs in an internal loop

Abstract

The crystal structure of the RNA dodecamer 5′-GGACUUUGGUCC-3′ has been determined from X-ray diffraction data to 2.6 Å resolution. This oligomer forms an asymmetric double helix in the crystal. Four consecutive non-Watson-Crick base-pairs are formed in the middle of the duplex including the first intrahelical U-U (or T-T) pairs observed in an oligonucleotide crystal structure. Two different conformations of U-U pairs are observed in the context of the surrounding sequence. One of these pairs is highly twisted, allowing a bound water to bridge across strands in the major groove. The crystal packing illustrates a new form of RNA helix-helix interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Young, L.S. et al. A class III transcription factor composed of RNA. Science 252, 542–546 (1991).

    Article  CAS  Google Scholar 

  2. Hingerty, B., Brown, R.S. & Jack, A. Further refinement of the structure of yeast tRNAphe J. molec. Biol. 124, 523–534 (1978).

    Article  CAS  Google Scholar 

  3. Sussman, J.L., Holbrook, S.R., Warrant, R.W., Church, G.M. & Kim, S -H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. molec. Biol. 123, 607–630 (1978).

    Article  CAS  Google Scholar 

  4. Comarmond, M.B., Giege, R., Thierry, J.C., Moras, D. & Fischer, J. Three-dimensional structure of yeast tRNA(asp). I. Structure determination. Acta crystallogr. B42, 272–280 (1986).

    Article  CAS  Google Scholar 

  5. Hou, Y.-M. & Schimmel, P. A simple structural feature is a major determinant of the identity of a transfer RNA Nature 333, 140–145 (1988).

    Article  CAS  Google Scholar 

  6. Olsen, H.S., Nelbrock, P., Cochrane, A.W. & Rosen, C.A. Secondary structure is the major determinant for interaction of HIV rev protein with RNA Science 247, 845–848 (1990).

    Article  CAS  Google Scholar 

  7. Holbrook, S.R., Cheong, C., Tinoco, I., Jr & Kim, S. -H. . Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs Nature 353, 579–581 (1991).

    Article  CAS  Google Scholar 

  8. Dock-Bregeon, A.C. et al. Crystallographic structure of an RNA helix: [U(UA)6A]2 J. molec. Biol. 209, 459–474 (1989).

    Article  CAS  Google Scholar 

  9. Cruse, W.B.T. et al. Structure of a mispaired RNA double helix at 1.6 Å resolution and implications for the prediction of RNA secondary structure. Proc. natn. Acad. Sci. U.S.A. 91,4160–4164 (1994).

    Article  CAS  Google Scholar 

  10. Kouchakdjian, M., Li, B.F.L., Swann, P.F. & Patel, D.J. Pyrimidine-pyrimidine base-pair mismatches in DNA: A nuclear magnetic resonance study of T-T pairing at neutral pH and C-C pairing at acidic pH in dodecanucleotide duplexes. J.molec. Biol. 202, 139–155 (1988).

    Article  CAS  Google Scholar 

  11. Santa Lucia, J., Jr, Kierzek, R. & Turner, D.H. Stabilities of consecutive A-C, C-C, G-G, U-C, and U-U mismatches in RNA internal loops: Evidence for stable hydrogen-bonded U-U and C-C+ pairs. Biochemistry. 30, 8243–8250 (1991).

    Google Scholar 

  12. Venable, R.M., Widmalm, G., Brooks, B.R., Egan, W. & Pastor, R.W. Conformational states of a TT mismatch from molecular dynamics simulation of duplex d(CGCGATTCGCG) Biopolymers 32, 783–794 (1992).

    Article  CAS  Google Scholar 

  13. Hunter, W.N., et al. The structure of guanosine-thymidine mismatches in B-DNA at 2.5 Å resolution. J. biol. Chem. 262, 9962–9970 (1987).

    CAS  PubMed  Google Scholar 

  14. Brown, T.C. & Jiricny, J. Repair of base-base mismatches in simian and human cells. Genome 31, 578–583 (1989).

    Article  CAS  Google Scholar 

  15. Fang, W. & Modrich, P. Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J. biol. Chem. 268, 11838–11844 (1993).

    CAS  PubMed  Google Scholar 

  16. Wimberly, B., Varani, G. & Tinoco, I.J. The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 32, 1078–1087 (1993).

    Article  CAS  Google Scholar 

  17. Brunger, A.T. Extension of molecular replacement: A new search strategy based on Patterson correlation refinement. Acta crystallogr. A46, 46–57 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeyens, K., De Bondt, H. & Holbrook, S. Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat Struct Mol Biol 2, 56–62 (1995). https://doi.org/10.1038/nsb0195-56

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0195-56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing