Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the holotoxino from Shigella dysenteriae at 2.5 Å resolution

Abstract

Shigella dysenteriae is the pathogen responsible for the severe form of dysentery in humans. It produces Shiga toxin, the prototype of a family of closely related bacterial protein toxins. We have determined the structure of the holotoxin, an AB5 hexamer, by X–ray crystallography. The five B subunits form a pentameric ring, encircling a helix at the carboxy terminus of the A subunit. The A subunit interacts with the B pentamer via this C–terminal helix and a four–stranded mixed β–sheet. The fold of the rest of the A subunit is similar to that of the A chain of the plant toxin ricin; both are N–glycosidases. However, the active site in the bacterial holotoxin is blocked by a segment of polypeptide chain. These residues of the A subunit would be released as part of the activation mechanism of the toxin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. O'Brien, A.D. et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr. Topics Microbiol. Immunol. 180, 65–94 (1992).

    CAS  Google Scholar 

  2. Endo, Y. et al. Site of action of Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 171, 45–50 (1988).

    Article  CAS  Google Scholar 

  3. Olsnes, S., Reisbig, R. & Eiklid, K. Subunit structure of Shigella cytotoxin. J. biol. Chem. 256, 8732–8738 (1981).

    CAS  PubMed  Google Scholar 

  4. Katzin, B.J., Collins, E.J. & Robertus, J.D. Structure of ricin A-chain at 2.5 Å. Proteins 10, 251–259 (1991).

    Article  CAS  Google Scholar 

  5. Jacewicz, M., Clausen, H., Nudelman, E., Donohue-Rolfe, A. & Keusch, G.T. Pathogenesis of Shigella diarrhea. XI. Isolation of a Shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriosylceramide. J. exp. Med. 163, 1391–1404 (1986).

    Article  CAS  Google Scholar 

  6. Cohen, A., Hannigan, G.E., Williams, B.R.G. & Lingwood, C.A. Roles of globotriosyl- and galabiosylceramide in verotoxin binding and high affinity interferon receptor. J. biol. Chem. 262, 17088–17091 (1987).

    CAS  PubMed  Google Scholar 

  7. Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983).

    Article  CAS  Google Scholar 

  8. Monzingo, A.F. & Robertus, J.D. X-ray analysis of substrate analogs in the ricin A-chain active site. J. molec. Biol. 227, 1136–1145 (1992).

    Article  CAS  Google Scholar 

  9. Reisbig, R., Olsnes, S. & Eiklid, K. The cytotoxic activity of Shigella toxin. Evidence for catalytic inactivation of the 60S ribosomal subunit. J. biol. Chem. 256, 8739–8744 (1981).

    CAS  PubMed  Google Scholar 

  10. Sielecki, A.R. & James, M.N.G. Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 Å resolution. Nature 319, 33–38 (1986).

    Article  Google Scholar 

  11. Stein, P.E., Boodhoo, A., Tyrrell, G.J., Brunton, J.L. & Read, R.J. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 355, 748–750 (1992).

    Article  CAS  Google Scholar 

  12. Sixma, T.K. et al. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351, 371–377 (1991).

    Article  CAS  Google Scholar 

  13. Sixma, T.K. et al. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 355, 561–564 (1992).

    Article  CAS  Google Scholar 

  14. Kozlov, Y.V., Chernaia, M.M., Fraser, M.E. & James, M.N.G. Purification and crystallization of Shiga toxin from Shigella dysenteriae. J. molec. Biol. 232, 704–706 (1993).

    Article  CAS  Google Scholar 

  15. Sakabe, N. X-ray diffraction data collection system for modern protein crystallography with a Weissenberg camera and an imaging plate using synchrotron radiation. Nucl. Instrum. Meth. A 303, 448–463 (1991).

    Article  Google Scholar 

  16. Sixma, T.K., Stein, P.E., Hol, W.G.J. & Read, R.J. Comparison of the B-pentamers of heat-labile enterotoxin and verotoxin-1: two structures with remarkable similarity and dissimilarity. Biochemistry 32, 191–198 (1993).

    Article  CAS  Google Scholar 

  17. Navaza, J. On the fast rotation function. Acta Crystallogr. A43, 645–653 (1987).

    Article  Google Scholar 

  18. Navaza, J. Accurate computation of the rotation matrices. Acta Crystallogr. A46, 619–620 (1990).

    Article  Google Scholar 

  19. Fujinaga, M. & Read, R.J. Experiences with a new translation-function program. J. appl. Crystallogr. 20, 517–521 (1987).

    Article  Google Scholar 

  20. Otwinowski, Z. Accurate refinement of heavy atom parameters. Amer. Crystallogr. Assoc. 1990 Annual Meeting, New Orleans, Abstr. C04 (1990).

    Google Scholar 

  21. Jones, T.A. Interactive computer graphics: FRODO. With modifications for TOM UQV/CIT v.2.8.0 by C. Cambillau, M. Israel, G. Griffin and A. Chirino. Meth. Enzym. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  22. Read, R.J. Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  23. Zuker, M. Suboptimal sequence alignment in molecular biology. Alignment with error analysis. J. molec. Biol. 221, 403–420 (1991).

    Article  CAS  Google Scholar 

  24. Quanta Release 3.2, Polygen Corporation, Waltham, MA, USA (1991).

  25. Brünger, A.T. X-PLOR Manual, Version 2.1, Yale University, New Haven, CT, USA (1990).

    Google Scholar 

  26. Vellieux, F.M.D. et al. Structure of glycosomal glyceraldehyde-3-phosphatedehydrogenasefrom Trypanosoma barucei determined from Laue data. Proc. natn. Acad. Sci. U.S.A. 90, 2355–2359 (1993).

    Article  CAS  Google Scholar 

  27. Tronrud, D.E. Conjugate-direction minimization. An improved method for the refinement of macromolecules. Acta Crystallogr. A48, 912–916 (1992).

    Article  CAS  Google Scholar 

  28. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Kabsch, W. & Sander, C. Dictionary of protein secondary structure:pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  30. Jones, T.A. O. Version 5.8.1, Uppsala, Sweden (1992).

    Google Scholar 

  31. SUPPOS is from the BIOMOL package, Gröningen, Holland.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraser, M., Chernaia, M., Kozlov, Y. et al. Crystal structure of the holotoxino from Shigella dysenteriae at 2.5 Å resolution. Nat Struct Mol Biol 1, 59–64 (1994). https://doi.org/10.1038/nsb0194-59

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0194-59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing