Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Barstar is electrostatically optimized for tight binding to barnase

Abstract

We used a novel charge optimization technique to study the small ribonuclease barnase and to analyze its interaction with a natural tight binding inhibitor, the protein barstar. The approach uses a continuum model to explicitly determine the charge distributions that lead to the most favorable electrostatic contribution to binding when competing desolvation and interaction effects are included. Given its backbone fold, barstar is electrostatically optimized for tight binding to barnase when compared with mutants where residues have been substituted with one of the 20 common amino acids. Natural proteins thus appear to use optimization of electrostatic interactions as one strategy for achieving tight binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the barnase–barstar complex.
Figure 2: Electrostatic binding contributions.
Figure 3: Electrostatic binding hot spot.

Similar content being viewed by others

References

  1. Janin, J. & Chothia, C. J. Biol. Chem. 265, 16027–16030 (1990).

    CAS  PubMed  Google Scholar 

  2. Hendsch, Z.S. & Tidor, B. Protein Sci. 3, 211–226 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang, A.-S. & Honig, B. J. Mol. Biol. 252, 351–365 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., O'Connell, T., Tropsha, A. & Hermans, J. Biopolymers 39, 479–489 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Waldburger, C.D., Schildbach, J.F. & Sauer, R.T. Nature Struct. Biol. 2, 122–128 (1995)

    Article  CAS  PubMed  Google Scholar 

  6. Wimley, W.C., Gawrisch, K., Creamer, T.P. & White, S.H. Proc. Natl. Acad. Sci. USA 93, 2985– 2990 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sindelar, C.V., Hendsch, Z.S. & Tidor, B. Protein Sci. 7, 1898–1914 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O'Shea, E.K., Rutkowski, R. & Kim, P.S. Cell 68, 699– 708 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, L.-P. & Tidor, B. J. Chem. Phys. 106, 8681–8690 (1997).

    Article  CAS  Google Scholar 

  10. Kangas, E. & Tidor, B. J. Chem. Phys. 109, 7522–7545 (1998).

    Article  CAS  Google Scholar 

  11. Schreiber, G. & Fersht, A.R. Biochemistry 32, 5145–5150 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hartley, R.W. Biochemistry 32, 5978–5984 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Buckle, A.M., Schreiber, G. & Fersht, A.R. Biochemistry 33, 8878– 8889 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Ratnaparkhi, G.S. Ramachandran, S., Udgaonkar, J.B. & Varadarajan, R. Biochemistry 37, 6958– 6966 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Schreiber, G. & Fersht, A.R. J. Mol. Biol. 248, 478–486 (1995).

    CAS  PubMed  Google Scholar 

  16. Schreiber, G., Buckle, A.M & Fersht, A.R. Structure 2, 945 –951 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Schreiber, G. & Fersht, A.R. Nature Struct. Biol. 3, 427–431 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  18. Gabdoulline, R.R. & Wade, R.C. Biophys. J. 72, 1917–1929 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Selzer, T. & Schreiber, G. J. Mol. Biol. 287, 409–419 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Hendsch, Z.S. & Tidor, B. Protein Sci. 8, 1381–1392 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clackson, T. & Wells, J.A. Science 267, 383–386 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Brooks, B.R. et al. J. Comput. Chem. 4, 187– 217 (1983).

    Article  CAS  Google Scholar 

  23. Dunbrack, R.L., Jr. & Karplus, M. J. Mol. Biol. 230, 543–574 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Gilson, M.K., Sharp, K.A. & Honig, B.H. J. Comput. Chem. 9, 327– 335 (1988).

    Article  CAS  Google Scholar 

  25. Vanderbei, R.J. LOQO v4.01 (Princeton University, Princeton, New Jersey; 1998).

    Google Scholar 

  26. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  27. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Honig for making the delphi and grasp computer programs available, M. Karplus for charmm, R.J. Vanderbei for loqo, and members of our research group, particularly J.A. Caravella and M.A. Ohliger, for helpful discussions and critical reading of an earlier draft of the manuscript. This work was supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Tidor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, LP., Tidor, B. Barstar is electrostatically optimized for tight binding to barnase. Nat Struct Mol Biol 8, 73–76 (2001). https://doi.org/10.1038/83082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing